Chuyên đề bồi dưỡng học sinh giỏi lớp 12 môn Toán

 

II.Giải pt bằng phương pháp hàm số:

Định lí 1:Nếu hàm số y=f(x) luôn đb (hoặc luôn ngb) thì số nghiệm của pt : f(x)=k

Không nhiều hơn một và f(x)=f(y) khi và chỉ khi x=y

Định lí 2: Nếu hàm số y=f(x) luôn đb (hoặc luôn ngb) và hàm số y=g(x) luôn ngb (hoặc luôn đb) trên D thì số nghiệm trên D của pt: f(x)=g(x) không nhiều hơn một

 

doc10 trang | Chia sẻ: tuanbinh | Lượt xem: 1075 | Lượt tải: 0download
Bạn đang xem nội dung Chuyên đề bồi dưỡng học sinh giỏi lớp 12 môn Toán, để tải tài liệu về máy bạn hãy click vào nút TẢI VỀ
Chuyên đề I: Ứng Dụng Đạo Hàm Trong Các Bài Toán Đại Số
I.Các vài toán liên quan đến nghiệm của pt-bpt:
Định lí 1: Số nghiệm của pt f(x)=g(x) chính là số giao điểm của hai đồ thị y=f(x) và y=g(x)
Định lí 2: Nếu hàm số y=f(x) lt trên D và , thì pt: f(x)=k có nghiệm khi và chỉ khi 
Định lí 3: Bất phương trình nghiệm đúng mọi x thuộc D khi và chỉ khi 
 Các ví dụ:
Bài 1:Tìm m để pt sau có nghiệm: (HSG Nghệ an 2005)
Lời giải: Xét hàm số có tập xác định là D=R
Bài 2:Tìm tất cả các giá trị của a để pt: có đúng một nghiệm 
(Đề thi HSG tỉnh Hải Dương Lớp 12 năm 2005)
Giải: Ta thấy để pt có nghiệm thì 
Bài 3: Cho phương trình . Tìm tất cả các giá trị của tham số a, để phương trình có đúng 2 nghiệm phân biệt. (HSG Nam Định 2004)
Giải: Vì không phải là nghiệm pt. Chia hai vế pt cho x3 ta được
Ta có bảng biến thiên: 
Dựa vào bảng bt ta thấy pt(1’) có đúng một nghiệm khi và chỉ khi 
f(t)
f’(t)
x
-2
2
1
-3
0
0
+
-
2
22
27
Bài 4:Cho hàm số với a,b là hai số thực dương khác nhau cho trước.Cmr với mỗi số thực đếu tồn tại duy nhất số thực ( HSG QG bảng A năm 2006)
Giải: Trước hết ta cos BĐT : (1) ta có thể cm (1) bằng hàm số hoặc bằng BĐT Bécnuli
Áp dụng BĐT Côsi và (1) ta có : (*) (do )
Mặt khác ta có: ta dễ dàng cm được f’(x) >0 mọi x>0 suy ra f(x) đồng biến với x>0 nên (**)
Vì f(x) liên tục khi x>0 nên từ (*) và (**) ta có điều phải cm
Bài tập:
 1. Tìm m để pt sau có nghiệm duy nhất thuộc 
 2.Tìm m để số nghiệm của pt: không nhiều hơn số nghiệm của pt: (HSG Nghệ an 1998)
 3. Tìm tất cả các giá trị a để bpt: nghiệm đúng 
 4. a)Cmr nếu a >0 là số sao cho bpt: đúng với mọi thì 
 b) Tìm tất cả các giá trị của a để : (HSG 12 Nam Định 2006)
II.Giải pt bằng phương pháp hàm số: 
Định lí 1:Nếu hàm số y=f(x) luôn đb (hoặc luôn ngb) thì số nghiệm của pt : f(x)=k
Không nhiều hơn một và f(x)=f(y) khi và chỉ khi x=y
Định lí 2: Nếu hàm số y=f(x) luôn đb (hoặc luôn ngb) và hàm số y=g(x) luôn ngb (hoặc luôn đb) trên D thì số nghiệm trên D của pt: f(x)=g(x) không nhiều hơn một
Định lí 3:Cho hàm số y=f(x) có đạo hàm đến cấp n và pt có m nghiệm, khi đó pt có nhiều nhất là m+1 nghiệm
Các ví dụ:
Bài 1:Giải pt:
 (Olympic 30-4 ĐBSCL 2000)
Giải: Ta thấy pt chỉ có nghiệm trong 
Với u=-3x, v=2x+1; u,v>0. Xét hàm số với t>0
Ta có 
(1)u=v -3x=2x+1 là nghiệm duy nhất của pt
Bài 2: Giải pt: (HSG Lớp 12 Nam Định 2006)
Giải: Xét hàm số : , ta có 
 Vì 
Nên dấu của f’(x) chính là dấu của sinx. Từ đây ta có 
Vậy pt đã cho có nghiệm duy nhất x=0
Bài 3: Giải pt: (HSG Nghệ an 2005)
Giải: Xét hàm số : 
Ta có: 
Mà ta thấy f(1)=f(0)=0 nên pt đã cho có hai nghiệm x=0 và x=1
Bài 4: Giải pt: (TH&TT)
Giải: Đk: x>-1/2
 (1)
Xét hàm số: ta có f(t) là hàm đồng biến nên
Xét hàm số: 
 có nhiều nhất là hai nghiệm, mà f(0)=f(1)=0 nên pt đã cho có hai nghiệm
x=0 và x=1
Bài 5: Giải hệ pt: 
Giải: Từ (2) và (3) ta có : 
. Xét hàm số f(t)=sint-3t với ta có f(t) là hàm nghịch biến nên f(x)=f(y)x=y thay vào (2) ta có là nghiệm của hệ
Bài 6: Giải hệ: (30-4 MOĐBSCL 2005)
Giải: Đk: (*)
(1) (do hàm số là hàm đồng biến)
Thay vào (2) ta có: 
Vậy là nghiệm duy nhất của hệ đã cho 
HỆ HOÁN VỊ VÒNG QUANH:
Định nghĩa:Là hệ có dạng: (I)
Định lí 1: Nếu f,g là các hàm cùng tăng hoặc cùng giảm trên A và là nghiệm của hệ trên A thì 
Định lí 2:Nếu f,g khác tính đơn điệu trên A và là nghiệm của hệ trên A thì nếu n lẻ và nếu n chẵn 
Bài 7:Giải hệ: 
Giải:Ta giả sử (x,y,z) là no của hệ. Xét hàm số 
ta có: nên f(t) là hàm đồng biến
Ta giả sử: x=Max{x,y,z} thì 
Vậy ta có x=y=z. Vì pt có nghiệm duy nhất x=1 nên hệ đã cho có nghiệm là x=y=z=1
Bài 8:Giải hệ: (HSG QG Bảng A năm 2006) 
Giải: Hệ 
Trong đó với 
Ta có f(t) là hàm nghịch biến, g(t) là hàm đb
Nên ta có nếu (x,y,z) là nghiệm của hệ thì x=y=z thay vào hệ ta có:
 pt này có nghiệm duy nhất x=3
Vậy nghiệm của hệ đã cho là x=y=z=3
Bài tập:
7. Tìm a để hệ sau đây có nghiệm duy nhất 
8. Tìm m để các pt sau có nghiệm: 
III. Các bài toán cực tri- chứng minh BĐT:
Bài 1: Cho 4 số thực a,b,c,d thoả mãn: a2+b2=1; c-d=3. Cmr:
 (HSG Nghệ an 2005)
Giải: ta có: 
Ta có vì nên
 ta có đpcm
Bài 2: Cho :.Tìm gtln (TH&TT)
Giải: Từ gt ta có: thay vào F ta được
Ta xét (vì y<2/3 thì Max không xảy ra), khi đó 
 dấu “=” có khi Vậy 
Bài 3: Cho .CMR: 
Giải: Xét hàm số : Với đk đã cho 
Ta có: f(x) là hàm đồng biến
đpcm
Bài 4:Cho a>b>c>0. CMR: 
Giải: Xét hàm số: 
Ta có : . Tiếp tục lấy đạo hàm:
 do a>b>c>0
 là hàm đb (ta có thể cm được nhờ Côsi)
Như vậy do f'(a) >0 nên f(a) đồng biến hay là f(a)>f(b)=0 như vậy ta có đpcm
 Bài 5:Cho Cmr: 
Giải: Không mất tính tổng quát ta giả sử: . Xét hàm số 
Ta có : 
 (do ) nên f(x) là hàm đb
đpcm
Bài 6: Cho n,k là các số nguyên dương . Cmr: 
(HSG QG bảng B 96-97)
Giải : Bđt 
Xét hàm số với 
. Xét hàm số 
Vậy . Ta cm 
* ta dễ dàng cm được bằng quy nạp hoặc đạo hàm
* (*) trong đó t=n-1
Ta có (*) đúng
Vậy ta có đpcm
 Bài 7: Cho .CMR:
Giải:Đặt và ĐK : . Khi đó bđt cần cm trở thành
Xét hàm số với 
Ta có: do 
Như vậy hàm f(x) là đồng biến do đó 
Nhưng 
đpcm
Bài 8: cho a,b,c>0. Cmr: 
Giải: Đặt và bđt đã cho 
Giả sử nên ta có: 
 với 
Ta có: đpcm
Nhận xét:Từ bài toán trên ta dễ dàng giải quyết được bài toán sau:
Cho a,b,c>0. Cmr: (chọn đội tuyển thi IMO 2005)
Bài tập áp dụng:
1. 
2. Cho và .Tìm gtnn của 
(HSG QG Bảng B năm 1998)
3.Cho a,b>0. Cmr: (HSG 12 Nam Định 2004)

File đính kèm:

  • docchuyen_de_boi_duong_hoc_sinh_gioi_lop_12_2802.doc