Bài giảng Đại số lớp 7 - Tiết 59: Cộng, trừ đa thức một biến - Phan Hoàng Giang
1. Cộng hai đa thức một biến
Trừ hai đa thức một biến:
Cách 1: Thực hiện tương tự như trừ đa thức nhiều biến.
P(x) - Q(x) = (2x5 + 5x4 - x3 + x2 - x - 1) - (- x4 + x3 + 5x + 2 )
2x5 + 5x4 - x3 + x2 - x -1 + x4 - x3 - 5x - 2
= 2x5 + (5x4 + x4)+(- x3 - x3) + x2 + (- x - 5x) + (- 1 - 2)
= 2x5 + 6x4 - 2x3 + x2 - 6x - 3
NHIỆT LIỆT CHÀO MỪNG CÁC THẦY, CÔ GIÁO ĐẾN DỰ TIẾT HỌC HÔM NAYGiáo viên : Phan Hoàng GiangTrường THCS MÊ LINH Tiết 59 : CỘNG, TRỪ ĐA THỨC MỘT BIẾNCho hai đa thức Tính: a) P(x) + Q(x) = ? b) P(x) – Q(x) = ?KIỂM TRA BÀI CŨP(x) = 2x5 + 5x4 - x3 + x2 - x - 1Q(x) = -x4 + x3 + 5x + 2 ĐÁP ÁN= 2x5 + 4x4 + x2 + 4x + 1 = 2x5 + (5x4 - x4) + (- x3 + x3) + x2 + (- x + 5x) + ( -1 + 2)P(x) + Q(x) = ( 2x5 + 5x4 - x3 + x2 - x – 1 ) + ( -x4 + x3 + 5x + 2 ) = 2x5 + 5x4 - x3 + x2 - x -1 + x4 - x3 - 5x - 2= 2x5 + (5x4 + x4)+(- x3 - x3) + x2 + (- x - 5x) + (- 1 - 2)= 2x5 + 6x4 - 2x3 + x2 - 6x - 3 P(x) - Q(x) = (2x5 + 5x4 - x3 + x2 - x - 1) - (- x4 + x3 + 5x + 2 ) = 2x5 + 5x4 - x3 + x2 - x - 1 - x4 + x3 + 5x + 2 P(x) = 2x5 + 5x4 - x3 + x2 - x - 1Q(x) = -x4 + x3 + 5x + 2 Tiết 59 : CỘNG, TRỪ ĐA THỨC MỘT BIẾN1. Cộng hai đa thức một biến Ví dụ :Cho hai đa thức :Tính: P(x) + Q(x) = ? Cách 1: Thực hiện tương tự như cộng đa thức nhiều biến.P(x) = 2x5 + 5x4 - x3 + x2 - x - 1Q(x) = - x4 + x3 + 5x + 2 = 2x5 + 4x4 + x2 + 4x + 1 = 2x5 + (5x4 - x4) + (- x3 + x3) + x2 + (- x + 5x) + ( -1 + 2)P(x) + Q(x) = ( 2x5 + 5x4 - x3 + x2 - x – 1 ) + ( -x4 + x3 + 5x + 2 ) = 2x5 + 5x4 - x3 + x2 - x - 1 - x4 + x3 + 5x + 2 Tiết 59 : CỘNG, TRỪ ĐA THỨC MỘT BIẾN1. Cộng hai đa thức một biến Ví dụ :Cho hai đa thức :Tính: P(x) + Q(x) = ? Cách 1: Thực hiện tương tự như cộng đa thức nhiều biến.P(x) = 2x5 + 5x4 - x3 + x2 - x - 1Q(x) = - x4 + x3 + 5x + 2 Cách 2: Cộng theo cột dọc P(x) + Q(x) = 2x5 4x4 + x2 + 4x + 1P(x) = 2x5 5x4 x3 + x2 – x - 1Q(x) = - x4 + x3 + 5x + 2P(x) + Q(x) =+ 4x4+ 4x+ 12x5++ x2 Tiết 59 : CỘNG, TRỪ ĐA THỨC MỘT BIẾN1. Cộng hai đa thức một biến P(x) = 2x5 + 5x4 - x3 + x2 - x - 1Q(x) = - x4 + x3 + 5x + 2 2. Trừ hai đa thức một biến:P(x) + Q(x) = 2x5 4x4 + x2 + 4x + 1Tính P(x) - Q(x) = ? . = 2x5 + 5x4 - x3 + x2 - x -1 + x4 - x3 - 5x - 2= 2x5 + (5x4 + x4)+(- x3 - x3) + x2 + (- x - 5x) + (- 1 - 2)= 2x5 + 6x4 - 2x3 + x2 - 6x - 3 P(x) - Q(x) = (2x5 + 5x4 - x3 + x2 - x - 1) - (- x4 + x3 + 5x + 2 ) Cách 1: Thực hiện tương tự như trừ đa thức nhiều biến.Tiết 59 : CỘNG, TRỪ ĐA THỨC MỘT BIẾN1. Cộng hai đa thức một biến P(x) = 2x5 + 5x4 - x3 + x2 - x - 1Q(x) = - x4 + x3 + 5x + 2 2. Trừ hai đa thức một biến:P(x) + Q(x) = 2x5 4x4 + x2 + 4x + 1Tính P(x) - Q(x) = ? . P(x) - Q(x) = Cách 1: Thực hiện tương tự như trừ đa thức nhiều biến.P(x) = 2x5 5x4 - x3 + x2 - x - 1Q(x) = - x4 + x3 + 5x + 2-2x5P(x) - Q(x) =+ 6x4+ x2 - 6x- 2x3 - 3Cách 2: Trừ theo cột dọc 2x5 6x4 – 2x3 + x2 - 6x - 3Tiết 59 : CỘNG, TRỪ ĐA THỨC MỘT BIẾN1. Cộng hai đa thức một biến 2. Trừ hai đa thức một biến:Cách 1: Thực hiện tương tự như trừ đa thức nhiều biến.P(x) = 2x5 5x4 - x3 + x2 - x - 1Q(x) = - x4 + x3 + 5x + 2-2x5P(x) - Q(x) =+ 6x4+ x2 - 6x- 2x3 - 3Cách 2: Trừ theo cột dọc Bạn An thực hiện phép tính P(x) – Q(x) ở ví dụ trên như sau : P(x) = 2x5 5x4 x3 + x2 – x - 1- Q(x) = x4 - x3 - 5x - 2 +P(x) - Q(x) =Vì P(x) – Q(x) = P(x) + [-Q(x)] nên ta đặt phép tính như sau :2x5 6x4 – 2x3 + x2 - 6x - 3Em hãy giải thích cách làm của bạn An.Trả lờiVì P(x) – Q(x) = P(x) + [-Q(x)] nên bạn An đã đổi dấu các hạng tử của Q(x) rồi thực hiện phép cộng hai đa thức theo cột dọcBạn An thực hiện phép tính P(x) – Q(x) ở ví dụ trên như sau : P(x) = 2x5 5x4 x3 + x2 – x - 1- Q(x) = x4 - x3 - 5x - 2 +P(x) - Q(x) =Vì P(x) – Q(x) = P(x) + [-Q(x)] nên ta đặt phép tính như sau :2x5 6x4 – 2x3 + x2 - 6x - 3* Chú ý: Để cộng hoặc trừ hai đa thức một biến, ta có thể thực hiện theo một trong hai cách sau: Cách 1: Thực hiện theo cách cộng, trừ đa thức đã học ở bài 6 Cách 2: Sắp xếp các hạng tử của hai đa thức cùng theo luỹ thừa giảm (hoặc tăng) của biến, rồi đặt phép tính theo cột dọc tương tự như cộng, trừ các số (chú ý đặt các đơn thức đồng dạng ở cùng một cột). Tiết 59 : CỘNG, TRỪ ĐA THỨC MỘT BIẾN1. Cộng hai đa thức một biến P(x) = 2x5 + 5x4 - x3 + x2 - x - 1Q(x) = - x4 + x3 + 5x + 2 2. Trừ hai đa thức một biến:P(x) + Q(x) = 2x5 4x4 + x2 + 4x + 1Cách 1: Thực hiện tương tự như trừ đa thức nhiều biến.Cách 2: Trừ theo cột dọc * Chú ý: SGK/45 Tiết 59 : CỘNG, TRỪ ĐA THỨC MỘT BIẾN1. Cộng hai đa thức một biến P(x) = 2x5 + 5x4 - x3 + x2 - x - 1Q(x) = - x4 + x3 + 5x + 2 2. Trừ hai đa thức một biến:P(x) + Q(x) = 2x5 4x4 + x2 + 4x + 1P(x) - Q(x) = 2x5 6x4 – 2x3 + x2 - 6x - 3* Chú ý: SGK/45 3.Luyện tập:Cho hai đa thức : M(x) = x4 +5x3 -x2 + x – 0,5N(x) = 3x4 – 5x2 – x - 2,5Tính : M(x) + N(x) và M(x) – N(x)?1C1C2Cho hai đa thức : M(x) = x4 +5x3 -x2 + x – 0,5N(x) = 3x4 – 5x2 – x - 2,5Tính : M(x) + N(x) và M(x) – N(x)?1Bài làmM(x) + N(x) = (x4 + 5x3 – x2 + x – 0,5) + (3x4 – 5x2 – x – 2,5)Cách 1.= x4 + 5x3 – x2 + x – 0,5 + 3x4 – 5x2 – x – 2,5= (x4 + 3x4) + 5x3 + (– x2 – 5x2) + (x – x ) + (– 0,5 – 2,5) = 4x4 + 5x3 – 6x2 - 3M(x) - N(x) = (x4 + 5x3 – x2 + x – 0,5) - (3x4 – 5x2 – x – 2,5)= x4 + 5x3 – x2 + x – 0,5 - 3x4 + 5x2 + x + 2,5= (x4 - 3x4) + 5x3 + (– x2 + 5x2) + (x + x ) + (– 0,5 + 2,5) = -2x4 + 5x3 + 4x2 + 2x + 2Cách 2.M(x) = x4 + 5x3 – x2 + x – 0,5N(x) = 3x4 – 5x2 – x – 2,5+M(x) + N(x) = 4x4 + 5x3 – 6x2 - 3 M(x) = x4 + 5x3 – x2 + x – 0,5N(x) = 3x4 – 5x2 – x – 2,5-M(x) - N(x) = -2x4 + 5x3 + 4x2 + 2x - 3 Cho hai đa thức : M(x) = x4 +5x3 -x2 + x – 0,5N(x) = 3x4 – 5x2 – x - 2,5Tính : M(x) + N(x) và M(x) – N(x)?1Bài làmBài 48 (trang 45 SGK). Chọn đa thức mà em cho là kết quả đúng :(2x3 – 2x + 1) - (3x2 + 4x – 1) = ? 2x3 + 3x2 – 6x + 22x3 - 3x2 – 6x + 22x3 - 3x2 + 6x + 22x3 - 3x2 - 6x - 2Tiết 59 : CỘNG, TRỪ ĐA THỨC MỘT BIẾN1. Cộng hai đa thức một biến 2. Trừ hai đa thức một biến:3.Luyện tập:4. Hướng dẫn về nhàTiết 60: CỘNG, TRỪ ĐA THỨC MỘT BIẾNNắm vững hai cách cộng, trừ hai đa thức một biến. Bài tập về nhà : 44 – 47 tr 45 SGKHướng dẫn bài 45 a) Vì P(x) + Q(x) = x5 – 2x2 + 1 => Q(x) = (x5 – 2x2 + 1) – P(x) b) Vì P(x) – R(x) = x3 => R(x) = P(x) – x3 Thay đa thức P(x) vào rồi thực hiện phép tính
File đính kèm:
- Cong_tru_da_thuc.ppt