Bài giảng Đại số lớp 7 - Tiết 59: Đa thức một biến - Trường THCS Thuỷ Triều
Cho đa thức:
Chú ý: Để sắp xếp các hạng tử của một đa thức, trước hết phải thu gọn đa thức đó.
VD1. Hãy sắp xếp các hạng tử của đa thức sau theo lũy thừa tăng của biến?
Q(x) = 4x3 – 2x + 5x2 – 2x3 + 1 – 2x3
VD2. Hãy sắp xếp các hạng tử của đa thức sau theo lũy thừa giảm của biến?
R(x) = -x2 + 2x4 + 2x – 3x4 – 10 + x4
Thùc hiÖn: Trinh V¨n B¸ch§¬n vÞ: Trêng THCS Thuû TriÒu N¨m häc 2009 - 2010Së gi¸o dôc vµ ®µo t¹o h¶i phßngPhßng gi¸o dôc thuû nguyªn§¹I Sè 7Tiết 59-ĐA THỨC MỘT BIẾNThùc hiÖn: Trinh V¨n B¸ch§¬n vÞ: Trêng THCS Thuû TriÒu N¨m häc 2009 - 2010KIỂM TRA BÀI CŨBài tập: Cho hai đa thức: M = x2 + y2 + 2x3 + z2 N = x2 – y2 + x3 – z2 Tính P = M + N Tìm bậc của đa thức PĐáp án: P = 2x2 + 3x3 (đa thức có bậc 3) Đa thức một biến là đa thức như thế nào?Tổ1: Viết một đa thức có biến là xTổ2: Viết một đa thức có biến là y Tổ3: Viết một đa thức có biến là z Tổ4: Viết một đa thức có biến là t VD:Là đa thức của biến y.Ta viết A(y)Đa thức biến x.Ta viết B(x)-Giá trị của đa thức A(y) tại y = -1 đuợc kí hiệu A(-1) -Giá trị của đa thức B(x) tại x = 2 đuợc kí hiệu B(2) Mỗi số được coi là một đa thức một biếnChú ý:Thu gọn đa thức B?(SGK/41) Hãy tính:?1Tính B(-2) ?Cho đa thứcCho đa thứcTính A(5) ?(SGK/41) Kết quả:?1Tìm bậc của đa thức A(y) và B(x) sau đây: ?2Bậc 2Bậc 5Vậy, dựa vào đâu để ta xác định được bậc của đa thức một biến ?Bậc của đa thức một biến (khác đa thức không đã thu gọn) là số mũ lớn nhất của biến trong đa thức đó.Bài tập 43 SGKTrong các số cho ở bên phải mỗi đa thức, số nào là bậc của đa thức đó ?-5 5 415 -2 1 3 5 1 1 -1 0D.C.B.A.Cho đa thức:F (x) = 3x + 5- 4x33x - 4x3+ 5x6 5x6+ 5F (x) = + x4+ x4+sắp xếp theo lũy thừa giảm của biến 3x - 4x3+ 5x6 5F (x) = + x4+sắp xếp theo lũy thừa tăng của biến VD2. Hãy sắp xếp các hạng tử của đa thức sau theo lũy thừa giảm của biến? R(x) = -x2 + 2x4 + 2x – 3x4 – 10 + x4 VD1. Hãy sắp xếp các hạng tử của đa thức sau theo lũy thừa tăng của biến? Q(x) = 4x3 – 2x + 5x2 – 2x3 + 1 – 2x3 Chú ý: Để sắp xếp các hạng tử của một đa thức, trước hết phải thu gọn đa thức đó.?3Hãy sắp xếp các hạng tử theo lũy thừa tăng của biếnEm hãy cho biết, khi sắp xếp một đa thức theo lũy thừa tăng hoặc giảm của biến ta cần chú ý đến điều gì ??4Hãy sắp xếp các hạng tử của đa thức theo lũy thừa giảm của biếnTrong đó a, b, c là hằng sốab+ c=-x2+2x-10Nhận xét: Mọi đa thức bậc 2 của biến x, sau khi đã xếp các hạng tử của chúng theo lũy thừa giảm của biến đều có dạng: ax2 + bx + c (a; b; c là các số cho trước và a khác 0)Chú ý: Trong các biểu thức đại số mà các chữ đại diện cho các số xác định cho trước. Để phân biệt với biến, người ta gọi những chữ như vậy là hằng số (gọi tắt là hằng) Xét đa thức: P(x) = 6x5 + 7x3 – 3x + 6 là hệ số của lũy thừa bậc 57 là hệ số của lũy thừa bậc 3-3 là hệ số của lũy thừa bậc 1 là hệ số của lũy thừa bậc 0 hệ số cao nhấthệ số tự do* Bậc của P(x) bằng 5 nên hệ số của lũy thừa bậc 5 gọi là hệ số cao nhất (số 6)* Hạng tử là hệ số của lũy thừa bậc 0 còn gọi là hệ số tự do6x5Xét đa thức: P(x) = 6x5 + 7x3 – 3x + Chú ý: Còn có thể viết đa thức P(x) đầy đủ từ lũy thừa bậc cao nhất đến lũy thừa bậc 0 là: Đa thức một biến Đa thức một biến Sắp xếp đa thức một biến Hệ số Khái niệm Kí hiệu Tìm bậc của đa thức Giá trị của đa thức một biến Sắp xếp các hạng tử theo lũy thừa tăng của biến Sắp sếp các hạng tử theo lũy thừa giảm của biến Xác định các hệ số của đa thức Xác định hệ số cao nhất, hệ số tự doTHẢO LUẬN NHÓMTổ 1 và 3 Tổ 2 và 4a) Sắp xếp f(x) theo lũy thừa tăng dần của biếna) Sắp xếp g(x) theo lũy thừa giảm dần của biếnb) Xác định bậc, hệ số cao nhất, hệ số tự do của đa thức f(x) ?b) Xác định bậc, hệ số cao nhất, hệ số tự do của đa thức g(x)?c) Tính giá trị của f(x) khi x = 2c) Tính giá trị của g(x) khi x = -1Bậc đa thức f(x) là 4, hệ số cao nhất là 2 và hệ số tự do là -10Kết quả tổ 1 và 3a)b)c)Kết quả Tổ 2 và 4Bậc đa thức g(x) là 5, hệ số cao nhất là 2 và hệ số tự do là 0a)b)c)5 ®2 ®3 ®5 ®2 ® TRẮC NGHIỆMHệ số cao nhất và hệ số tự do của đa thức: A. -7 và 1B. 2 và 0C. -5 và 0D. 2 và 3109876543210Trò chơi nhanh chânEm thứ I: Tự cho ví dụ một đa thức một biến có bậc lớn hơn bậc haiEm thứ II: Xác định bậc của đa thức đó Em thứ III: Xác định hệ số cao nhất và hệ số tự do Heát giôøCÔNG VIỆC Ở NHÀ-Làm các bài tập 35, 36 SBT/14-Xem bài trước “Cộng, Trừ Đa Thức Một Biến”-Nắm vững cách sắp xếp đa thức, biết tìm bậc, hệ số cao nhất, hệ số tự do của đa thức một biến
File đính kèm:
- Da_thuc_mot_bien_tiet_59.ppt