Bài giảng Giải tích 12 cơ bản tiết 19: Khảo sát sự biến thiên vaø vẽ đồ thị hàm số bậc ba
2.Bài 2. Khảo sát sự biến thiên và vẽ đồ thị hàm số y = x3 +3x2 + 4x
a. TXĐ : D= R
b. Sự biến thiên :
* Chiều biến thiên
y' = 3x2 + 6x + 4
Ta có
y' = 3x2 + 6x + 4 =3(x+1)2 + 1 > 0
với mọi x R nên hàm số đồng biến trên khoảng và không có cực trị
Ngày soạn : 05/10/2008 Tiết 19 KHẢO SÁT SỰ BIẾN THIÊN VAØ VẼ ĐỒ THỊ HÀM SỐ BẬC BA I. Mục tiêu : + Kiến thức : Biết sơ đồ tổng quát để khảo sát hàm số bậc 3 : Tìm tập xác định ,chiều biến thiên , tìm cực trị , lập bảng biến thiên , tìm điểm đặc biệt , vẽ đồ thị + Kỹ năng : Biết vận dụng đạo hàm cấp 1 để xét chiều biến thiên và tìm điểm cực trị của hàm số , biết vẽ đồ thị hàm số bậc 3 + Tư duy và thái độ : Vẽ đồ thị cẩn thận , chính xác , Nhận được dạng của đồ thị Biết được tâm đối xứng của đồ thị hàm số bậc 3,vẽ chính xác đồ thị đối xứng II. Chuẩn bị của giáo viên và học sinh : + Giáo viên : Giáo án , thước kẻ , phấn màu , bảng phụ + Học sinh : Soạn bài tập về khảo sát và vẽ đồ thị hàm số bậc 3 III. Phương pháp : + Gợi mở , hướng dẫn + Học sinh lên bảng trình bày bài giải + Hoạt động nhóm IV. Tiến trình bài dạy : 1. Ổn định tổ chức : ( Sĩ số , học sinh vắng ) 2. Kiểm tra bài cũ : a. Phát biểu sơ đồ khảo sát sự biến thiên và vẽ đồ thị hàm số b. Áp dụng : Khảo sát sự biến thiên và vẽ dồ thị hàm số y = x3 – 3x 3. Bài mới : Hoạt động 1. Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng HĐTP1 Gọi học sinh nêu tập xác định của hàm số HĐTP2 Tính đạo hàm y’ và tìm nghiệm của đạo hàm y’ = 0 Dựa vào dấu của đạo hàm y’ nêu tính đồng biến và nghịch biến của hàm số HĐTP1 Phát biểu tập xác định của hàm số HĐTP2 Phát biểu đạo hàm y’ và tìm nghiệm của đạo hàm y’ = 0 Phát biểu dấu của đạo hàm y’ nêu tính đồng biến và nghịch biến của hàm số 1.Bài 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số y = 2 + 3x – x3 a. TXĐ : R b. Sự biến thiên : * Chiều biến thiên y' = 3 – 3x2 y' = 0 Trên khoảng và y' âm nên hàm số nghịch biến Trên khoảng ( – 1;1) y' dương nên hàm số đồng biến Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng HĐTP3 Dựa vào chiều biến thiên Tìm điểm cực đại và cực tiểu của đồ thị hàm số Tính các giới hạn tại vô cực HĐTP4 Dựa vào chiều biến thiên và điểm cực trị của hàm số hãy lập bảng biến thiên Tìm giao điểm của đồ thị với các trục toạ độ HĐTP5 Vẽ đồ thị hàm số HĐTP3 Phát biểu chiều biến thiên và điểm cực đại , cực tiểu của đồ thị hàm số Tính các giới hạn tại vô cực HĐTP4 Gọi học sinh lập bảng biên thiên và tìm giao điểm của đồ thị với các trục toạ độ HĐTP5 Vẽ đồ thị hàm số * Cực trị : Hàm số đạt cực tiểu tại x = –1, yCT = y( –1) = 0 Hàm số đạt cực đại tại x = 1 yCĐ = y(1) = 4 Các giới hạn tại vô cực ; *Bảng biến thiên x – 1 1 y’ – 0 + 0 – y 4 0 CĐ CT c. Đồ thị : Ta có 2 + 3x – x3 = (x+1)2(2 – x) = 0 Vậy các giao điểm của đồ thị hàm số với trục Ox là ( –1;0) và (2;0) Giao điểm của đồ thị hàm số với trục Oy là I(0;2) Ta có đồ thị nhận I(0;2) làm tâm đối xứng và đồ thị là Hoaït ñoäng 2: Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng HĐTP1 Nêu tập xác định của hàm số HĐTP2 Tính đạo hàm y’ và tìm nghiệm của đạo hàm y’ = 0 nếu có Nêu y’=3(x+1)2 + 1>0 Suy ra tính đơn điệu của hàm số Tính các giới hạn ở vô cực HĐTP3 Nêu bảng biến thiên và xác định các điểm đặc biệt HĐTP4 Vẽ đồ thị hàm số HĐTP1 Phát biểu tập xác định của hàm số HĐTP2 Phát biểu đạo hàm y’ và xác định dấu của đạo hàm y’ để suy ra tính đơn điệu của hàm số HĐTP3 Lập bảng biến thiên và tìm điểm đặc biệt HĐTP4 Vẽ đồ thị hàm số 2.Bài 2. Khảo sát sự biến thiên và vẽ đồ thị hàm số y = x3 +3x2 + 4x a. TXĐ : D= R b. Sự biến thiên : * Chiều biến thiên y' = 3x2 + 6x + 4 Ta có y' = 3x2 + 6x + 4 =3(x+1)2 + 1 > 0 với mọi x R nên hàm số đồng biến trên khoảng và không có cực trị * Các giới hạn tại vô cực ; *Bảng biến thiên x y’ + y c. Đồ thị Đồ thị hàm số qua gốc toạ độ và điểm (–2;– 4), nhận điểm I(–1;–2) làm tâm đối xứng . Ta có đồ thị 4. Củng cố : Nêu sơ đồ khảo sát sự biến thiên và vẽ đồ thị hàm số bậc 3 5. Bài tập về nhà Khảo sát sự biến thiên và vẽ đồ thị hàm số a. y = x4 – 2x2 - 2 b. y = – x4 + 8x2 – 2
File đính kèm:
- BT_hbac3.doc