Bài giảng Giải tích 12 cơ bản tiết 24, 25: Luỹ thừa
Nội dung ghi bảng
2.Phương trình xn=b
a)Trường hợp n lẻ :
Với mọi số thực b, phương trình có nghiệm duy nhất.
b)Trường hợp n chẵn :
+Với b < 0, phương trình vô nghiệm
+Với b = 0, phương trình có một nghiệm x = 0 ;
+Với b > 0, phương trình có 2 nghiệm đối nhau .
Ngày soạn: 02/10/2009 LUỸ THỪA Tiết: 24-25 I.Mục tiêu : 1/Về kiến thức:+ Nắm được các khái niệm luỹ thừa với số mũ nguyên, luỹ thừa với số mũ hữu tỉ và luỹ thừa của một số thực dương . +Nắm được các tính chất của luỹ thừa với số mũ nguyên, luỹ thừa với số mũ hữu tỉ và luỹ thừa với số mũ thực . 2/Về kỹ năng : + Biết dùng các tính chất của luỹ thừa để rút gọn biểu thức, so sánh các biểu thức có chứa luỹ thừa . 3/Về tư duy và thái độ :+Từ khái niệm luỹ thừa với số nguyên dương xây dựng khái niệm luỹ thừa với số mũ thực. +Rèn luyện tư duy logic, khả năng mở rộng , khái quát hoá . II.Chuẩn bị của giáo viên và học sinh : +Giáo viên : Giáo án , bảng phụ , phiếu học tập . +Học sinh :SGK và kiến thức về luỹ thừa đã học ở cấp 2 . III.Phương pháp : +Phối hợp nhiều phương pháp nhằm phát huy tính tích cực của học sinh +Phương pháp chủ đạo : Gợi mở nêu vấn đề . IV.Tiến trình bài học : Ổn định lớp : Kiểm tra bài cũ : Câu hỏi 1 : Tính Câu hỏi 2 : Nhắc lại định nghĩa luỹ thừa bậc n của a (n) 3.Bài mới : Hoạt động 1 : Hình thành khái niệm luỹ thừa . HĐTP 1 : Tiếp cận định nghĩa luỹ thừa với số mũ nguyên . Hoạt động của giáo viên Hoạt động của học sinh Nội dung ghi bảng Câu hỏi 1 :Với m,n =? (1) =? (2) =? Câu hỏi 2 :Nếu m<n thì công thức (2) còn đúng không ? Ví dụ : Tính ? -Giáo viên dẫn dắt đến công thức : -Giáo viên khắc sâu điều kiện của cơ số ứng với từng trường hợp của số mũ -Tính chất. -Đưa ra ví dụ cho học sinh làm - Phát phiếu học tập số 1 để thảo luận . -Củng cố,dặn dò. -Bài tập trắc nghiệm. +Trả lời. , +A = - 2 +Nhận phiếu học tập số 1 và trả lời. I.Khái niện luỹ thừa : 1.Luỹ thừa với số mũ nguyên : Trong biểu thức am , ta gọi a là cơ số, số nguyên m là số mũ. CHÚ Ý : Luỹ thừa với số mũ nguyên có các tính chất tương tự của luỹ thừa với số mũ nguyên dương . HĐTP 2 :Dựa vào đồ thị biện luận số nghiệm của pt xn = b Hoạt động của giáo viên Hoạt động của học sinh Nội dung ghi bảng -Treo bảng phụ : Đồ thị của hàm số y = x3 và đồ thị của hàm số y = x4 và đường thẳng y = b CH1:Dựa vào đồ thị biện luận theo b số nghiệm của pt x3 = b và x4 = b ? -GV nêu dạng đồ thị hàm số y = x2k+1 và y = x2k CH2:Biện luận theo b số nghiệm của pt xn =b Dựa vào đồ thị hs trả lời x3 = b (1) Với mọi b thuộc R thì pt (1) luôn có nghiệm duy nhất x4=b (2) Nếu b<0 thì pt (2) vô nghiêm Nếu b = 0 thì pt (2) có nghiệm duy nhất x = 0 Nếu b>0 thì pt (2) có 2 nghiệm phân biệt đối nhau . -HS suy nghĩ và trả lời 2.Phương trình : a)Trường hợp n lẻ : Với mọi số thực b, phương trình có nghiệm duy nhất. b)Trường hợp n chẵn : +Với b < 0, phương trình vô nghiệm +Với b = 0, phương trình có một nghiệm x = 0 ; +Với b > 0, phương trình có 2 nghiệm đối nhau . HĐTP3:Hình thành khái niệm căn bậc n Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng - Nghiệm nếu có của pt xn = b, với n2 được gọi là căn bậc n của b CH1: Có bao nhiêu căn bậc lẻ của b ? CH2: Có bao nhiêu căn bậc chẵn của b ? -GV tổng hợp các trường hợp. Chú ý cách kí hiệu Ví dụ : Tính ? CH3: Từ định nghĩa chứng minh : = -Đưa ra các tính chất căn bậc n . -Ví dụ : Rút gọn biểu thức a) b) +Củng cố,dặn dò. +Bài tập trắc nghiệm. HS dựa vào phần trên để trả lời . HS vận dụng định nghĩa để chứng minh. Tương tự, học sinh chứng minh các tính chất còn lại. Theo dõi và ghi vào vở HS lên bảng giải ví dụ 3.Căn bậc n : a)Khái niệm : Cho số thực b và số nguyên dương n (n2). Số a được gọi là căn bậc n của b nếu an = b. b)Tính chất căn bậc n : khi n lẻ khi n chẵn HĐTP4: Hình thành khái niệm luỹ thừa với số mũ hữu tỉ Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng -Với mọi a>0,luôn xác định .Từ đó GV hình thành khái niệm luỹ thừa với số mũ hữu tỉ. -Ví dụ : Tính ? -Phát phiếu học tập số 2 cho học sinh thảo luận Học sinh giải ví dụ Học sinh thảo luận theo nhóm và trình bày bài giải 4.Luỹ thừa với số mũ hữu tỉ Cho số thực a dương và số hữu tỉ Luỹ thừa của a với số mũ r là ar xác định bởi HĐTP5: Hình thành khái niệm lũy thừa với số mũ vô tỉ Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Cho a>0, là số vô tỉ đều tồn tại dãy số hữu tỉ (rn) có giới hạn là và dãy () có giới hạn không phụ thuộc vào việc chọn dãy số (rn). Từ đó đưa ra định nghĩa. Học sinh theo dõi và ghi chép. 5.Luỹ thừa với số mũ vô tỉ: SGK Chú ý: 1= 1, R Hoạt động 2: Tính chất của lũy thừa với số mũ thực: HĐTP1: Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng - Nhắc lại tính chất của lũy thừa với số mũ nguyên dương. - Giáo viên đưa ra tính chất của lũy thừa với số mũ thực, giống như tính chất của lũy thừa với số mũ nguyên dương -Bài tập trắc nghiệm. Học sinh nêu lại các tính chất. II. Tính chất của luỹ thừa với số mũ thực: SGK Nếu a > 1 thì kck Nếu a < 1thì kck 4.Củng cố: +Khái niệm: nguyên dương , có nghĩa a. hoặc = 0 , có nghĩa . số hữu tỉ không nguyên hoặc vô tỉ , có nghĩa . +Các tính chất chú ý điều kiện. +Bài tập về nhà:-Làm các bài tập SGK . Caùch laøm: Nhö caùc ví duï Tính giá trị biểu thức: Tính giá trị biểu thức: với a > 0,b > 0, Chuaån bò kieán thöùc ñeå hoïc tieát HAØM SOÁ LUYÕ THÖØA
File đính kèm:
- GA giải tích 12-luỹ thừa.doc