Bất đẳng thức lượng giác - Chương 2: Các phương pháp chứng minh
Ví dụ 2.5.4.
CMR trong mọi tam giác ta ñều có :
A B A B A B ( ) cos A cos B cosC cos Acos B cos C
12
13
1+ cos cos + cos cos + cos cos ≤ + + +
Lời giải :
Bất ñẳng thức cần chứng minh tương ñương với :
A B C ( ) A B A B A B ( ) cos A cos B cos C
6
13
1− 2cos cos cos + 2 cos cos + cos cos + cos cos +1 ≥ + +
A B C ( ) A B A B A B ( ) cos A cos B cos C
6
13
⇔ cos2 + cos2 + cos2 + 2 cos cos + cos cos + cos cos +1 ≥ + +
( ) A B C ( ) cos A cos B cos C
6
13
⇔ cos + cos + cos 2 +1 ≤ + +
6
13
cos cos cos
1
cos cos cos ≤
+ +
⇔ + + +
A B C
A B C
ðặt
3 2
t = cos A + cos B + cosC ⇒ 1 < t ≤
Xét hàm ñặc trưng : ( )
t
f t = t + 1 với t ∈ ;1 2 3
BAC ACACB CBCBA coscossinsincos coscossinsincos coscossinsincos −= −= −= nên : ( ) ( )2 4 3 coscoscoscoscoscos1 ≤++⇔ ACCBBA Thật vậy hiển nhiên ta có : ( ) ( )3coscoscos 3 1 coscoscoscoscoscos 2CBAACCBBA ++≤++ Mặt khác ta có : 2 3 coscoscos ≤++ CBA ( )3⇒ ñúng ( )2⇒ ñúng ⇒ñpcm. ðẳng thức xảy ra khi và chỉ khi ABC∆ ñều. Ví dụ 2.2.3. Cho ABC∆ bất kỳ. CMR : 1 coscos4cos21 1 coscos4cos21 1 coscos4cos21 1 ≥ ++ + ++ + ++ ACCCBBBAA Lời giải : ðặt vế trái bất ñẳng thức cần chứng minh là T. Theo AM – GM ta có : ( ) ( )[ ] ( )19coscoscoscoscoscos4coscoscos23 ≥++++++ ACCBBACBAT mà : 2 3 coscoscos ≤++ CBA và hiển nhiên : ( ) 4 3 3 coscoscos coscoscoscoscoscos 2 ≤++≤++ CBAACCBBA ( ) ( ) ( )29coscoscoscoscoscos4coscoscos23 ≤++++++⇒ ACCBBACBA Từ ( ) ( )2,1 suy ra ⇒≥ 1T ñpcm. Ví dụ 2.2.4. CMR với mọi ABC∆ bất kỳ, ta có : ( ) ( ) ( )222222 34 accbbaScba −+−+−+≥++ Lời giải : Bất ñẳng thức cần chứng minh tương ñương với : Trường THPT chuyên Lý Tự Trọng – Cần Thơ Bất ñẳng thức lượng giác Chương 2 Các phương pháp chứng minh The Inequalities Trigonometry 41 ( ) ( )1342 222 cbaScabcab +++≥++ Ta có : S cbaC S bacB S acbA 4 cot 4 cot 4 cot 222 222 222 −+ = −+ = −+ = Khi ñó : ( ) ( ) 3 2 tan 2 tan 2 tan 3cot sin 1 cot sin 1 cot sin 1 cotcotcot434 sin 1 sin 1 sin 141 ≥++⇔ ≥ −+ −+ −⇔ +++≥ ++⇔ CBA C C B B A A CBASS CBA S ⇒ñpcm. ðẳng thức xảy ra khi và chỉ khi ABC∆ ñều. Ví dụ 2.2.5. CMR trong mọi tam giác, ta có : R rACCBBA 48 5 2 sin 2 sin 2 sin 2 sin 2 sin 2 sin +≤++ Lời giải : Áp dụng công thức : 2 sin 2 sin 2 sin4 CBARr = , ta ñưa bất ñẳng thức ñã cho về dạng tương ñương sau : ( )1 8 5 2 sin 2 sin 2 sin 2 sin 2 sin 2 sin 2 sin 2 sin 2 sin ≤−++ CBAACCBBA Ta có : 2 sin 2 sin 2 sin41coscoscos CBACBA +=++ Do ñó : ( ) ( ) ( )2 8 51coscoscos 4 1 2 sin 2 sin 2 sin 2 sin 2 sin 2 sin1 ≤−++−++⇔ CBAACCBBA Theo AM – GM, ta có : 2 sin 2 sin2 2 cos 2 cos 2 cos 2 cos 2 sin 2 sin2 2 cos 2 cos 2 cos 2 cos BA A B B A BA A B B A ≥ +⇒≥+ Trường THPT chuyên Lý Tự Trọng – Cần Thơ Bất ñẳng thức lượng giác Chương 2 Các phương pháp chứng minh The Inequalities Trigonometry 42 +≤⇒ 2 tansin 2 tansin 2 1 2 sin 2 sin2 ABBABA Tương tự ta có : +≤ +≤ 2 tansin 2 tansin 2 1 2 sin 2 sin2 2 tansin 2 tansin 2 1 2 sin 2 sin2 CAACAC BCCBCB Từ ñó suy ra : ( ) ( ) ( ) +++++≤ ≤ ++ BACACBCBA ACCBBA sinsin 2 tansinsin 2 tansinsin 2 tan 2 1 2 sin 2 sin 2 sin 2 sin 2 sin 2 sin2 ++≥++⇒ 2 sin 2 sin 2 sin 2 sin 2 sin 2 sin2coscoscos ACCBBACBA Khi ñó : ( ) ( ) ( ) ( ) 4 1 coscoscos 4 11coscoscos 4 1 coscoscos 2 1 1coscoscos 4 1 2 sin 2 sin 2 sin 2 sin 2 sin 2 sin =++=−++−++≤ ≤−++−++ CBACBACBA CBAACCBBA mà 2 3 coscoscos ≤++ CBA ( ) 8 51coscoscos 4 1 2 sin 2 sin 2 sin 2 sin 2 sin 2 sin ≤−++−++⇒ CBAACCBBA ( )2⇒ ñúng⇒ñpcm. Ví dụ 2.2.6. Cho ABC∆ bất kỳ. CMR : 2 tan 2 tan 2 tancotcotcot 2223222 CBA cba CBA cba ≤ ++ ++ Lời giải : Ta có : S CBA cba 4 cotcotcot 222 = ++ ++ nên bất ñẳng thức ñã cho tương ñương với : Trường THPT chuyên Lý Tự Trọng – Cần Thơ Bất ñẳng thức lượng giác Chương 2 Các phương pháp chứng minh The Inequalities Trigonometry 43 ( )1 2 tan 2 tan 2 tan 64 222 3 CBA cbaS ≤ Mặt khác ta cũng có : 2 sin4 cos22cos2 22 2222 Abca AbcbcaAbccba ≥⇒ −≥⇒−+= SAbc A Abc A a 4sin2 2 tan 2 sin4 2 tan 2 2 ==≥⇒ Tương tự ta cũng có : SC cS B b 4 2 tan ;4 2 tan 22 ≥≥ ( )1⇒ ñúng ⇒ñpcm. Ví dụ 2.2.7. CMR trong mọi tam giác ta có : ( ) ( ) ( ) 3cos1cos1cos1 ≤−+++−+++−++ CabbaBcaacAbccb Lời giải : Ta có vế trái của bất ñẳng thức cần chứng minh bằng : ( ) ( ) ( ) ( )[ ] ( )BcaAbcCabCbaBacAcbCBA coscoscoscoscoscoscoscoscos ++−++++++++ ðặt : ( ) ( ) ( ) BcaAbcCabR CbaBacAcbQ CBAP coscoscos coscoscos coscoscos ++= +++++= ++= Dễ thấy 2 3≤P Mặt khác ta có : ( ) ( ) aARCBRBCCBRBcCb ==+=+=+ sin2sin2cossincossin2coscos Tương tự : cbaQ cAbBa bCaAc ++=⇒ =+ =+ coscos coscos Và ta lại có : Trường THPT chuyên Lý Tự Trọng – Cần Thơ Bất ñẳng thức lượng giác Chương 2 Các phương pháp chứng minh The Inequalities Trigonometry 44 2 222 coscoscos 222 222222222 cbaR bacacbcbaBcaAbcCab ++ =⇒ −+ + −+ + −+ =++ ( ) ( ) ( ) ( ) 3 3 1113 22 3 222222 ≤−+−+−−=++−+++≤++⇒ cbacbacbaRQP ⇒ñpcm. Ví dụ 2.2.8. Cho ABC∆ bất kỳ. CMR : SrR 4 3≥+ Lời giải : Ta có : ( ) CBA CBA CBAR S p S r CBA SCBAR S abcR sinsinsin sinsinsin28 sinsinsin sinsinsin28 sinsinsin2 4 3 ++ = ++ == === Vậy : CBA CBA CBA S CBA S rR sinsinsin sinsinsin28 sinsinsin22 1 sinsinsin22 1 ++ ++=+ Theo AM – GM ta có : ( )3 sinsinsinsinsinsin8 sinsinsin 3 CBACBA CBASSrR ++ ≥+ mà : 8 33 sinsinsin 2 33 sinsinsin ≤ ≤++ CBA CBA ⇒=≥+⇒ SSSrR 43 4 3 33.274 4 ñpcm. Ví dụ 2.2.9. CMR trong mọi tam giác ta có : Trường THPT chuyên Lý Tự Trọng – Cần Thơ Bất ñẳng thức lượng giác Chương 2 Các phương pháp chứng minh The Inequalities Trigonometry 45 22 3 8 23 8 ≥ + + + + + ≥ R S ac caca cb bcbc ba abab r S Lời giải : Theo AM – GM ta có : 2 cabcab ac caca cb bcbc ba abab ++≤ + + + + + Do ( ) 623 8 22 cba r SprS ++= ⇒= Lại có : ( ) 62 2 cbacabcab ++≤++ ⇒ + + + + + ≥ ⇒ ac caca cb bcbc ba abab r S 2 23 8 vế trái ñược chứng minh xong. Ta có : ( ) 33 2 33 sinsinsin sinsinsin2 Rcba CBA CBARcba ≤++⇒ ≤++ ++=++ Theo AM – GM ta có : ( )( ) ( )( ) ( )( ) 8 2 abcpapcpcpbpbpappS ≤−−−−−−= ( ) ( ) ( )accbba abc cba abc cba abcp R S +++++ = ++ ⋅= ++ ⋅≤ ⇒ 9 2 9 33 8 3 8 3 8 2 2 Một lần nữa theo AM – GM ta có : ( ) ( ) ( ) ( )( )( ) ac caca cb bcbc ba abab accbba abc accbba abc + + + + + ≤ +++ ≤ +++++ 3.3 99 ⇒vế phải chứng minh xong⇒Bất ñẳng thức ñược chứng minh hoàn toàn. Ví dụ 2.2.10. Cho ABC∆ bất kỳ. CMR : 4 2 8 2 8 2 8 3 6 2 cos 2 cos 2 cos ≥++ R abc C c B b A a Trường THPT chuyên Lý Tự Trọng – Cần Thơ Bất ñẳng thức lượng giác Chương 2 Các phương pháp chứng minh The Inequalities Trigonometry 46 Lời giải : Áp dụng BCS ta có : ( ) 2 cos 2 cos 2 cos 2 cos 2 cos 2 cos 222 2444 2 8 2 8 2 8 CBA cba C c B b A a ++ ++≥++ mà : ( )224 222 16 4 9 2 cos 2 cos 2 cos S R abc CBA = ≤++ Vì thế ta chỉ cần chứng minh : 2444 16Scba ≥++ Trước hết ra có : ( ) ( )1444 cbaabccba ++≥++ Thật vậy : ( ) ( ) ( ) ( ) 01 222222 ≥−+−+−⇔ abcccabbbcaa ( )[ ]( ) ( )[ ]( ) ( )[ ]( ) 0222222222 ≥−+++−+++−++⇔ babacacacbcbcba (ñúng!) Mặt khác ta cũng có : ( )( )( ) ( )( )( )( ) ( )21616 2 bacacbcbacbacpbpappS −+−+−+++=−−−= Từ ( ) ( )2,1 thì suy ra ta phải chứng minh : ( )( )( ) ( )3bacacbcbaabc −+−+−+≥ ðặt : bacz acby cbax −+= −+= −+= vì cba ,, là ba cạnh của một tam giác nên 0,, >zyx Khi ñó theo AM – GM thì : ( )( )( ) ( )( )( ) ( )( )( )bacacbcbaxyzzxyzxyxzzyyxabc −+−+−+==≥+++= 8 222 8 ( )3⇒ ñúng ⇒ñpcm. 2.3 ðưa về vector và tích vô hướng : Phương pháp này luôn ñưa ra cho bạn ñọc những lời giải bất ngờ và thú vị. Nó ñặc trưng cho sự kết hợp hoàn giữa ñại số và hình học. Những tính chất của vector lại mang ñến lời giải thật sáng sủa và ñẹp mắt. Nhưng số lượng các bài toán của phương pháp này không nhiều. Ví dụ 2.3.1. Trường THPT chuyên Lý Tự Trọng – Cần Thơ Bất ñẳng thức lượng giác Chương 2 Các phương pháp chứng minh The Inequalities Trigonometry 47 A B C e e e 1 2 3 O A B C CMR trong mọi tam giác ta có : 2 3 coscoscos ≤++ CBA Lời giải : Lấy các vector ñơn vị 321 ,, eee lần lượt trên các cạnh CABCAB ,, . Hiển nhiên ta có : ( ) ( ) ( ) ( ) ( ) 2 3 coscoscos 0coscoscos23 0,cos2,cos2,cos23 0 133221 2 321 ≤++⇔ ≥++−⇔ ≥+++⇔ ≥++ CBA CBA eeeeee eee ⇒ñpcm. Ví dụ 2.3.2. Cho ABC∆ nhọn. CMR : 2 32cos2cos2cos −≥++ CBA Lời giải : Gọi O, G lần lượt là tâm ñường tròn ngoại tiếp và trọng tâm ABC∆ . Ta có : OGOCOBOA 3=++ Hiển nhiên : ( ) ( ) ( ) ( )[ ] ( ) 2 32cos2cos2cos 02cos2cos2cos23 0,cos,cos,cos23 0 22 22 2 −≥++⇔ ≥+++⇔ ≥+++⇔ ≥++ CBA BACRR OAOCOCOBOBOARR OCOBOA ⇒ñpcm. ðẳng thức xảy ra ABCGOOGOCOBOA ∆⇔≡⇔=⇔=++⇔ 00 ñều. Ví dụ 2.3.3. Trường THPT chuyên Lý Tự Trọng – Cần Thơ Bất ñẳng thức lượng giác Chương 2 Các phương pháp chứng minh The Inequalities Trigonometry 48 O A B C Cho ABC∆ nhọn. CMR Rzyx ∈∀ ,, ta có : ( )222 2 12cos2cos2cos zyxCxyBzxAyz ++−≥++ Lời giải : Gọi O là tâm ñường tròn ngoại tiếp ABC∆ . Ta có : ( ) ( )222 222 222 2 2 12cos2cos2cos 02cos22cos22cos2 0.2.2.2 0 zyxCxyBzxAyz BzxAyzCxyzyx OAOCzxOCOByzOBOAxyzyx OCzOByOAx ++−≥++⇔ ≥+++++⇔ ≥+++++⇔ ≥++ ⇒ñpcm. 2.4. Kết hợp các bất ñẳng thức cổ ñiển : Về nội dung cũng như cách thức sử dụng các bất ñẳng thức chúng ta ñã bàn ở chương 1: “Các bước ñầu cơ sở”. Vì thế ở phần này, ta sẽ không nhắc lại mà xét thêm một số ví dụ phức tạp hơn, thú vị hơn. Ví dụ 2.4.1. CMR ABC∆∀ ta có : 2 39 2 cot 2 cot 2 cot 2 sin 2 sin 2 sin ≥ ++ ++ CBACBA Lời giải : Theo AM – GM ta có : 3 2 sin 2 sin 2 sin 3 2 sin 2 sin 2 sin CBA CBA ≥ ++ Mặt khác : 2 sin 2 sin 2 sin 2 cos 2 cos 2 cos 2 cot 2 cot 2 cot 2 cot 2 cot 2 cot CBA CBA CBACBA ==++ Trường THPT chuyên Lý Tự Trọng – Cần Thơ Bất ñẳng thức lượng giác Chương 2 Các phương pháp chứng minh The Inequalities Trigonometry 49 ( ) 2 sin 2 sin 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos 2 sin 2 3 2 sin 2 sin 2 sin2 2 cos 2 sin 2 cos 2 sin 2 cos 2 sin 2 sin 2 sin 2 sin sinsinsin 4 1 3 CBA CCBBAA CBA CCBBAA CBA CBA ⋅≥ ++ = ++ = Suy ra : ( )1 2 cot 2 cot 2 cot 2 9 2 sin 2 sin 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos 2 sin 2 sin 2 sin 2 sin 2 9 2 cot 2 cot 2 cot 2 sin 2 sin 2 sin 3 3 CBA CBA CCBBAACBA CBACBA = ⋅≥ ≥ ++ ++ mà ta cũng có : 33 2 cot 2 cot 2 cot ≥CBA ( )2 2 3933 2 9 2 cot 2 cot 2 cot 2 9 33 =⋅≥⋅⇒ CBA Từ ( )1 và ( )2 : 2 39 2 cot 2 cot 2 cot 2 sin 2 sin 2 sin ≥ ++ ++⇒ CBACBA ⇒ñpcm. Ví dụ 2.4.2. Cho ABC∆ nhọn. CMR : ( )( ) 2 39 tantantancoscoscos ≥++++ CBACBA Lời giải : Vì ABC∆ nhọn nên CBACBA tan,tan,tan,cos,cos,cos ñều dương. Theo AM – GM ta có : 3 coscoscos 3 coscoscos CBACBA ≥++ CBA CBACBACBA coscoscos sinsinsin tantantantantantan ==++ Trường THPT chuyên Lý Tự Trọng – Cần Thơ Bất ñẳng thức lượng giác Chương 2 Các phương pháp chứng minh The Inequalities Trigonometry 50 ( ) CBA CCBBAA CBA CCBBAA CBA CBA coscoscos2 cossincossincossin 2 3 coscoscos2 cossincossincossin coscoscos 2sin2sin2sin 4 1 3 ⋅≥ ++ = ++ = Suy ra : ( )( ) ( )1tantantan 2 9 coscoscos cossincossincossincoscoscos 2 9 tantantancoscoscos 3 3 CBA CBA CCBBAACBACBACBA = ⋅≥++++ Mặt khác : 33tantantan ≥CBA ( )2 2 3933 2 9 tantantan 2 9 33 =⋅≥⋅⇒ CBA Từ ( )1 và ( )2 suy ra : ( )( ) 2 39 tantantancoscoscos ≥++++ CBACBA ⇒ñpcm. Ví dụ 2.4.3. Cho ABC∆ tùy ý. CMR : 34 2 tan 1 2 tan 2 tan 1 2 tan 2 tan 1 2 tan ≥ ++ ++ + C C B B A A Lời giải : Xét ( ) ∈∀= 2 ;0tan pixxxf Khi ñó : ( ) =xf '' Theo Jensen thì : ( )13 2 tan 2 tan 2 tan ≥++ CBA Xét ( ) ∈∀= 2 ;0cot pixxxg Và ( ) ( ) ∈∀>+= 2 ;00cotcot12'' 2 pixxxxg Theo Jensen thì : ( )233 2 cot 2 cot 2 cot ≥++ CBA Vậy ( ) ( )⇒+ 21 ñpcm. Trường THPT chuyên Lý Tự Trọng – Cần Thơ Bất ñẳng thức lượng giác Chương 2 Các phương pháp chứng minh The Inequalities Trigonometry 51 Ví dụ 2.4.4. CMR trong mọi tam giác ta có : 3 3 21 sin 11 sin 11 sin 11 +≥ + + + CBA Lời giải : Ta sử dụng bổ ñề sau : Bổ ñề : Cho 0,, >zyx và Szyx ≤++ thì : ( )121111111 3 +≥ + + + Szyx Chứng minh bổ ñề : Ta có : ( ) ( )2111111111 xyzzxyzxyzyx VT + +++ +++= Theo AM – GM ta có : ( )399111 Szyxzyx ≥ ++ ≥++ Dấu bằng xảy ra trong ( ) 3 3 Szyx ===⇔ Tiếp tục theo AM –GM thì : 33 xyzzyxS ≥++≥ ( )4271 27 3 3 Sxyz xyzS ≥⇒≥⇒ Dấu bằng trong ( )4 xảy ra 3 S zyx ===⇔ Vẫn theo AM – GM ta lại có : ( )513111 3 2 ≥++ xyzzxyzxy Dấu bằng trong ( )5 xảy ra 3 S zyx ===⇔ Từ ( )( )54 suy ra : ( )627111 2Szxyzxy ≥++ Dấu bằng trong ( )6 xảy ra ⇔ ñồng thời có dấu bằng trong ( )( ) 3 54 Szyx ===⇔ Từ ( )( )( )( )6432 ta có : Trường THPT chuyên Lý Tự Trọng – Cần Thơ Bất ñẳng thức lượng giác Chương 2 Các phương pháp chứng minh The Inequalities Trigonometry 52 ( ) 3 32 312727911 +=+++≥ SSSS VT Bổ ñề ñược chứng minh. Dấu bằng xảy ra ⇔ ñồng thời có dấu bằng trong ( )( )( )643 3 S zyx ===⇔ Áp dụng với 0sin,0sin,0sin >=>=>= CzByAx mà ta có 2 33 sinsinsin ≤++ CBA vậy ở ñây 2 33 =S Theo bổ ñề suy ra ngay : 3 3 21 sin 11 sin 11 sin 11 +≥ + + + CBA Dấu bằng xảy ra 2 3 sinsinsin ===⇔ CBA ABC∆⇔ ñều. Ví dụ 2.4.5. CMR trong mọi tam giác ta có : 3plll cba ≤++ Lời giải : Ta có : ( ) ( ) ( )1222 cos2 app cb bc bc app cb bc cb Abc la −+ = − + = + = Theo AM – GM ta có 12 ≤ + cb bc nên từ ( )1 suy ra : ( ) ( )2appla −≤ Dấu bằng trong ( )2 xảy ra cb =⇔ Hoàn toàn tương tự ta có : ( ) ( ) ( ) ( )4 3 cppl bppl c b −≤ −≤ Dấu bằng trong ( )( )43 tương ứng xảy ra cba ==⇔ Từ ( )( )( )432 suy ra : ( ) ( )5cpbpapplll cba −+−+−≤++ Dấu bằng trong ( )5 xảy ra ⇔ ñồng thời có dấu bằng trong ( )( )( ) cba ==⇔432 Áp dụng BCS ta có : Trường THPT chuyên Lý Tự Trọng – Cần Thơ Bất ñẳng thức lượng giác Chương 2 Các phương pháp chứng minh The Inequalities Trigonometry 53 ( ) ( ) ( )63 33 2 pcpbpap cbapcpbpap ≤−+−+−⇒ −−−≤−+−+− Dấu bằng trong ( )6 xảy ra cba ==⇔ Từ ( )( )65 ta có : ( )73plll cba ≤++ ðẳng thức trong ( )7 xảy ra ⇔ ñồng thời có dấu bằng trong ( )( ) cba ==⇔65 ABC∆⇔ ñều. Ví dụ 2.4.6. Cho ABC∆ bất kỳ. CMR : R r abc cba 24 333 −≥++ Lời giải : Ta có : ( )( )( )cpbpapppr R abcS −−−=== 4 ( )( )( ) ( )( )( ) ( )( )( ) abc abccbacaacbccbabba abc cbabacacb abc cpbpap pabc cpbpapp pabc S R r 2 222222882 333222222 2 −−−−+++++ = −+−+−+ = −−− = −−− ==⇒ abc cba c a a c b c c b a b b a abc cba R r 333333 624 ++≤ +++++−+ ++ =−⇒ ⇒ñpcm. Ví dụ 2.4.7. Cho ABC∆ nhọn. CMR : abcb A a C c a C c B b c B b A a 27 coscoscoscoscoscos ≥ −+ −+ −+ Lời giải : Bất ñẳng thức cần chứng minh tương ñương với : CBAB A A C CA C C B BC B B A A sinsinsin27sin cos sin cos sin sin cos sin cos sin sin cos sin cos sin ≥ −+ −+ −+ Trường THPT chuyên Lý Tự Trọng – Cần Thơ Bất ñẳng thức lượng giác Chương 2 Các phương pháp chứng minh The Inequalities Trigonometry 54 27 coscos coscos1 coscos coscos1 coscos coscos1 sinsinsin27sin coscos sin sin coscos sin sin coscos sin ≥−⋅−⋅−⇔ ≥ − − −⇔ AC AC CB CB BA BA CBAB AC BA CB AC BA C ðặt + − = + − = + − = ⇒ << = = = 2 2 2 2 2 2 1 1 cos 1 1 cos 1 1 cos 1,,0 2 tan 2 tan 2 tan z zC y yB x xA zyx C z By A x và − = − = − = 2 2 2 1 2 tan 1 2 tan 1 2 tan z zC y yB x xA Ta có : ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )22 22 22 22 22 22 11 2 11 11 11 111 coscos coscos1 yx yx yx yx yx yx BA BA −− + = ++ −− ++ −− − = − Mặt khác ta có : xyyx 222 ≥+ ( )1tantan 1 2 1 2 coscos coscos1 22 BAy y x x BA BA = − ⋅ − ≥−⇒ Tương tự : ( )2tantan coscos coscos1 CB CB CB ≥− ( )3tantan coscos coscos1 AC AC AC ≥− Nhân vế theo vế ba bất ñẳng thức ( )( )( )321 ta ñược : CBA AC AC CB CB BA BA 222 tantantan coscos coscos1 coscos coscos1 coscos coscos1 ≥−⋅−⋅− Ta ñã biết : 27tantantan33tantantan 222 ≥⇒≥ CBACBA Suy ra : 27 coscos coscos1 coscos coscos1 coscos coscos1 ≥−⋅−⋅− AC AC CB CB BA BA ⇒ñpcm. Ví dụ 2.4.8. CMR ABC∆∀ ta có : +≥++ p abcpcba 2222 35 36 Trường THPT chuyên Lý Tự Trọng – Cần Thơ Bất ñẳng thức lượng giác Chương 2 Các phương pháp chứng minh The Inequalities Trigonometry 55 Lời giải : Bất ñẳng thức cần chứng minh tương dương với : ( ) ( ) ( ) cba abc cbacba cba abccba cba ++ +++≥++⇔ ++ + ++≥++ 72935 2 435 36 2222 2 222 Theo BCS thì : ( ) ( )2222 3 cbacba ++≤++ ( ) ( ) ( )1279 2222 cbacba ++≤++⇒ Lại có : ≥++ ≥++ 3 222 222 3 3 3 cbacba abccba ( )( ) ( )( ) ( ) ( )2728 728 9 222 222 222 cba abc cba abccbacba abccbacba ++ ≥++⇔ ≥++++⇔ ≥++++⇒ Lấy ( )1 cộng ( )2 ta ñược : ( ) ( ) ( ) ( ) ( ) cba abc cbacba cba abc cbacbacba ++ +++≥++⇔ ++ +++≥+++++ 72935 729827 2222 2222222 ⇒ñpcm. Ví dụ 2.4.9. CMR trong ABC∆ ta có : 6 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos ≥ − + − + − C BA B AC A CB Lời giải : Theo AM – GM ta có : ( )1 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos 3 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos 3 C BA B AC A CB C BA B AC A CB − ⋅ − ⋅ − ≥ − + − + − Trường THPT chuyên Lý Tự Trọng – Cần Thơ Bất ñẳng thức lượng giác Chương 2 Các phương pháp chứng minh The Inequalities Trigonometry 56 mà : ( )( )( ) CBA BAACCB CC BABA BB ACAC AA CBCB C BA B AC A CB sinsinsin sinsinsinsinsinsin 2 sin 2 cos2 2 cos 2 sin2 2 sin 2 cos2 2 cos 2 sin2 2 sin 2 cos2 2 cos 2 sin2 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos +++ = −+ ⋅ −+ ⋅ −+ = − ⋅ − ⋅ − Lại theo AM – GM ta có : ≥+ ≥+ ≥+ ACAC CBCB BABA sinsin2sinsin sinsin2sinsin sinsin2sinsin ( )( )( ) ( )( )( ) ( )28 sinsinsin sinsinsinsinsinsin sinsinsin8sinsinsinsinsinsin ≥+++⇒ ≥+++⇒ CBA BAACCB CBABAACCB Từ ( )( )21 suy ra : 683 2 sin 2 cos 2 sin 2 cos 2 sin 2 cos 3 =≥ − + − + − C BA B AC A CB ⇒ñpcm. Ví dụ 2.4.10. CMR trong mọi ABC∆ ta có : 2 9sinsinsinsinsinsin ≥++ R rACCBBA Lời giải : Bất ñẳng thức cần chứng minh tương ñương với : 2 2 2 36 9 222222 9sinsinsinsinsinsin rcabcab r accbba rACRCBRBAR ≥++⇔ ≥⋅+⋅+⋅⇔ ≥++ Theo cô
File đính kèm:
- BDT-Luong-Giac2.pdf