Chuyên đề Giải toán bằng máy tính casio
Ví dụ: Hiện nay tuổi bố gấp ba lần tuổi con, cách đây 5 năm tuổi bố gấp 4 lần tuổi con. Vậy bố hơn con mấy tuổi?
Với a, b, c là các số tự nhiên tăng liên tiếp. Hãy tính hiệu cba - abc I) CHỨC NĂNG CÁC PHÍM : NỘI DUNG II) CÁC DẠNG TOÁN III) GIỚI THIỆU CÁC DẠNG TOÁN TRONG BỒI DƯỠNG CASIO IV) TỔNG KẾT I) CHỨC NĂNG CÁC PHÍM : II) CÁC DẠNG TOÁN : DẠNG 1: GIẢI PHƯƠNG TRÌNH BẬC HAI ax2+bx+c=0(a # 0 ) Quy trình ấn: nhaäp caùc heä soá a, b, c vaøo maùy, sau moãi laàn nhaäp heä soá aán phím giaù trò môùi ñöôïc ghi vaøo trong boä nhôù cuûa maùy tính. Ví dụ: Giaûi phöông trình: 1,85432x2 – 3,21458x – 2,45971 = 0 Giải Chuù yù: Khi giaûi baèng chöông trình caøi saün treân maùy neáu ôû goùc traùi maøn hình maùy hieän thì nghieäm ñoù laø nghieäm phöùc Ví dụ: Giaûi phöông trình: x2 – 2x + 5 = 0 DẠNG 2: GIẢI PHƯƠNG TRÌNH BẬC BA ax3+bx2+cx+d=0(a # 0 ) Quy trình ấn: nhaäp caùc heä soá a, b, c vaøo maùy, sau moãi laàn nhaäp heä soá aán phím giaù trò môùi ñöôïc ghi vaøo trong boä nhôù cuûa maùy tính. Ví dụ: Giaûi phöông trình: x3 – 5x + 1 = 0 Giải Quy trình ấn: nhaäp caùc heä soá a, b, c vaøo maùy, sau moãi laàn nhaäp heä soá aán phím giaù trò môùi ñöôïc ghi vaøo trong boä nhôù cuûa maùy tính. DẠNG 3: GIẢI HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN Quy trình ấn: nhaäp caùc heä soá a1, b1, c1, a2, b2, c2 vaøo maùy, sau moãi laàn nhaäp heä soá aán phím giaù trò môùi ñöôïc ghi vaøo trong boä nhôù cuûa maùy tính. Ví dụ: Giaûi hệ phöông trình: Giải Ví dụ: Hiện nay tuổi bố gấp ba lần tuổi con, cách đây 5 năm tuổi bố gấp 4 lần tuổi con. Vậy bố hơn con mấy tuổi? Giải: a = 45, b = 15. Vậy bố hơn con 30 DẠNG 4: GIẢI HỆ PHƯƠNG TRÌNH BẬC NHẤT BA ẨN Quy trình ấn: Nhaäp caùc heä soá a1, b1, c1, a2, b2, c2, a3, b3, c3 vaøo maùy, sau moãi laàn nhaäp heä soá aán phím giaù trò môùi ñöôïc ghi vaøo trong boä nhôù cuûa maùy tính Ví dụ: Giaûi hệ phöông trình: Giải DẠNG 5 : “TÍNH GIÁ TRỊ LỚN NHẤT , GIÁ TRỊ NHỎ NHẤT” Bài 1: Tìm giá trị lớn nhất của hàm số f(x) = -1,2x2 + 4,9x + 5,37 (Kết quả chính xác đến 0,000001) Bài 2: Tìm giá trị nhỏ nhất của hàm số f(x ) = 1,7x2 + 5,7x – 3,41 (Kết quả chính xác đến 0,00001) Bài 3: Tìm GTNN của hàm số Giải: Vậy GTNN f(x) = 4 Bài 3: Tìm GTNN của hàm số DẠNG 6: BIỂU THỨC CHỨA CHỮ: DẠNG 7 : TÌM CẶP NGHIỆM (x,y) NGUYÊN DƯƠNG THỎA MÃN PHƯƠNG TRÌNH Dạng 1: Tính giá trị biểu thức, biểu thức có quy luật Dạng 2: Liên phân số, số THVHTH Dạng 3: Tìm số dư trong phép chia Dạng 4: Tìm số, tìm chữ số tận cùng Dạng 5: Tìm số lẽ thập phân thứ n sau dấu phẩy Dạng 6: ƯCLN, BCNN Dạng 7: Phép tính trang màn hình Dạng 8: Đa thức Dạng 9: Tăng trưởng dân số, lãi suất ngân hàng Dạng 10: Dãy số Dạng 11: Thống kê Dạng 12: Hàm số Dạng 13: Đa giác Dạng 14: Hình tròn Dạng 15: Hình học không gian Dạng 16: Bài toán số học III) DẠNG TOÁN BỒI DƯỠNG CASIO IV) TỔNG KẾT Trên đây tôi đã giới thiệu một số dạng toán mà qua quá trình giảng dạy tôi thấy nó được sử dụng nhiều. Tuy chưa đầy đủ nhưng hy vọng các đồng nghiệp cảm thấy bổ ích. Rất mong sự đóng góp của các bạn đồng nghiệp để chuyên đề này thêm hoàn thiện hơn .
File đính kèm:
- chuyen de casio.ppt