Chuyên đề lớp 12: Hàm số
Dạng 1: Tiệm cận hàm số hữu tỉ y=P(x)/Q(x)
Phương pháp
• Tiệm cận đứng: Nghiệm của mẫu không phải là nghiệm của tử cho phép xác định tiệm cận đứng.
• Tiệm cận ngang, xiên:
+ Det(P(x)) < Det (Q(x)): Tiệm cận ngang y = 0
+ Det(P(x)) = Det(Q(x)): Tiệm cận ngang là tỉ số hai hệ số bậc cao nhất của tử và mẫu.
+ Det (P(x)) = Det(Q(x)) + 1: Không có tiệm cận ngang; Tiệm cận xiên được xác định bằng cách phân tích hàm số thành dạng: f(x) = ax + b + với thì y = ax + b là tiệm cận xiên.
HÀM SỐ [1. TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ Dạng 1: Tính đơn điệu của hàm số I. Kiến thức cơ bản 1. Định nghĩa Giả sử hàm số y = f(x) xác định trên K: + Hàm số y = f(x) được gọi đồng biến trên khoảng K nếu: + Hàm số y = f(x) được gọi là nghịch biến trên khoảng K nếu: 2. Qui tắc xét tính đơn điệu a. Định lí Cho hàm số y = f(x) có đạo hàm trên K: + Nếu f’(x) > 0 với mọi x thuộc K thì hàm số đồng biến + Nếu f’(x) < 0 với mọi x thuộc K thì hàm số nghịch biến b. Qui tắc B1: Tìm tập xác định của hàm số B2: Tính đạo hàm của hàm số. Tìm các điểm xi (i = 1, 2,,n) mà tại đó đạo hàm bằng 0 hoặc không xác định. B3: Sắp xếp các điểm xi theo thứ tự tăng dần và lập bảng biến thiên. B4: Nêu kết luận về các khoảng đồng biến, nghịch biến. II. Các ví dụ Loại 1: Xét sự biến thiên của hàm số Ví dụ 1. Xét sự đồng biến và nghịc biến của hàm số: Ví dụ 2. Xét sự biến thiên của các hàm số sau: Loại 2: Chứng minh hàm số đồng biến hoặc nghịch biến trên khoảng xác định. Phương pháp + Dựa vào định lí. Ví dụ 3. Chứng minh hàm số nghịch biến trên đoạn [1; 2] Ví dụ 4 Chứng minh hàm số đồng biến trên nửa khoảng [3; +). Hàm số nghịc biến trên mỗi nửa khoảng [-2; 0) và (0;2] Ví dụ 5. Chứng minh rằng Hàm số nghịch biến trên mỗi khoảng xác định của nó. Hàm số đồng biến trên mỗi khoảng xác định của nó. Hàm số nghịch biến trên R. Dạng 2. Tìm giá trị của tham số để một hàm số cho trước đồng biến, nghịch biến trên khoảng xác định cho trước Phương pháp: + Sử dụng qui tắc xét tính đơn điêu của hàm số. + Sử dụng định lí dấu của tam thức bậc hai Ví dụ 6. Tìm giá trị của tham số a để hàm số đồng biến trên R. Ví dụ 7. Tìm m để hàm số đồng biến trên khoảng Ví dụ 8. Với giá trị nào của m, hàm số: đồng biến trên mỗi khoảng xác định của nó. Ví dụ 9 Xác định m để hàm số đồng biến trên khoảng (0; 3) Ví dụ 10 Cho hàm số Tìm m để hàm số tăng trên từng khoảng xác định Tìm m để hàm số tăng trên Tìm m để hàm số giảm trên Ví dụ 11 Cho hàm số . Tìm m để hàm số: Liên tục trên R Tăng trên khoảng Ví dụ 12 (ĐH KTQD 1997) Cho hàm số đồng biến trên Dạng 3. Sử dụng chiều biến thiên để chứng minh BĐT Phương pháp Sử dụng các kiến thức sau: + Dấu hiệu để hàm số đơn điệu trên một đoạn. + f ( x) đồng biến trên [a; b] thì + f(x) nghịch biến trên [a; b] thì Ví dụ 1. Chứng minh các bất đẳng thức sau: Ví dụ 2. Chohàm số f(x) = 2sinx + tanx – 3x Chứng minh rằng hàm số đồng biến trên nửa khoảng Chứng minh rằng Ví dụ 3 Cho hàm số a.Chứng minh hàm số đồng biến trên nửa khoảng b. Chứng minh Ví dụ 3 Cho hàm số Xét chiều biến thiên của hàm số trên Chứng minh rằng CỰC TRỊ CỦA HÀM SỐ Dạng 1. Tìm cực trị của hàm số Phương pháp: Dựa vào 2 qui tắc để tìm cực trị của hàm số y = f(x) Qui tắc I. B1: Tìm tập xác định. B2: Tính f’(x). Tìm các điểm tại đó f’(x) = 0 hoặc f’(x) không xác định. B3. Lập bảng biến thiên. B4: Từ bảng biến thiên suy ra các cực trị Qui tắc II. B1: Tìm tập xác định. B2: Tính f’(x). Giải phương trình f’(x) = 0 và kí hiệu là xi là các nghiệm của nó. B3: Tính f ”(xi) B4: Dựa vào dấu của f ” (xi) suy ra cực trị ( f ”(xi) > 0 thì hàm số có cực tiểu tại xi; ( f ”(xi) < 0 thì hàm số có cực đại tại xi) * Chú ý: Qui tắc 2 thường dùng với hàm số lượng giác hoặc việc giải phương trình f’(x) = 0 phức tạp. Ví dụ 1. Tìm cực trị của hàm số Qui tắc I. TXĐ: R Vậy x = -3 là điểm cực đại và ycđ =71 x= 2 là điểm cực tiểu và yct = - 54 Qui tắc II TXĐ: R y”= 12x + 6 y’’(2) = 30 > 0 nên hàm số đạt cực tiểu tại x = 2 và yct = - 54 y’’(-3) = -30 < 0 nên hàm số đạt cực đại tại x = -3 và ycđ =71 Bài1. Tìm cực trị của các hàm số sau: Bài 2. Tìm cực trị của các hàm số sau: Bài 3. Tìm cực trị các hàm số Bài 4. Tìm cực trị các hàm số: Dạng 2. Xác lập hàm số khi biết cực trị Để tìm điều kiện sao cho hàm số y = f(x) đạt cực trị tại x = a B1: Tính y’ = f’(x) B2: Giải phương trình f’(a) = 0 tìm được m B3: Thử lại giá trị a có thoả mãn điều kiện đã nêu không ( vì hàm số đạt cực trị tại a thì f’(a) = 0 không kể CĐ hay CT) Ví dụ 1. Tìm m để hàm số y = x3 – 3mx2 + ( m - 1)x + 2 đạt cực tiểu tại x = 2 LG . Hàm số đạt cực trị tại x = 2 thì y’(2) = 0 Với m = 1 ta được hàm số: y = x3 – 3x2 + 2 có : tại x = 2 hàm số đạt giá trị cực tiểu Vậy m = 1 là giá trị cần tìm Bài 1. Xác định m để hàm số Bài 2. Tìm m để hàm số Bài 3. Tìm m để hàm số Bài 4. Tìm m để hàm số Bài 5. Tìm các hệ số a, b, c sao cho hàm số: đạt cực tiểu tại điểm x = 1, f(1) = -3 và đồ thị cắt trục tung tại điểm có tung độ bằng 2 Bài 6. Tìm các số thực q, p sao cho hàm số đạt cực đại tại điểm x = -2 và f(-2) = -2 Hướng dẫn: + Nếu + Nếu q > 0 thì: Lập bảng biến thiên để xem hàm đạt cực tại tại giá trị x nào. Dạng 3. Tìm điều kiện để hàm số có cực trị Bài toán: ‘Tìm m để hàm số có cực trị và cực trị thoả mãn một tính chất nào đó.’ Phương pháp B1: Tìm m để hàm số có cực trị. B2: Vận dụng các kiến thức khác Chú ý: Hàm số có cực trị khi và chỉ khi phương trình y’ = 0 có hai nghiệm phân biệt. Cực trị của hàm phân thức . Giả sử x0 là điểm cực trị của y, thì giá trị của y(x0) có thể được tính bằng hai cách: hoặc Ví dụ . Xác định m để các hàm số sau có cực đại và cực tiểu Hướng dẫn. a. TXĐ: R . Để hàm số có cực trị thì phương trình: b. TXĐ: Bài 1. Tìm m để hàm số Bài 2. Tìm m để hàm sô luôn có cực đại và cực tiểu. Bài 3. Cho hàm số . Tìm a để hàm số có cực đại, cực tiểu và các điểm cực tiểu của đồ thị cách đều trục tung. Bài 4. Hàm số . Tìm m để hàm số có cực đại cực tiểu. Bài 5. Cho hàm . Tìm m để hàm số có cực trị Bài 6. Cho hàm số . Xác định m để hàm số có cực đại và cực tiểu. Dạng 4. Tìm tham số để các cực trị thoả mãn tính chất cho trước. Phương pháp + Tìm điều kiện để hàm số có cực trị + Vận dụng các kiến thức về tam thức, hệ thức Viet để thoả mãn tính chất. Ví dụ . Bài1. Tìm cực trị của các hàm số sau: Bài 2. Tìm cực trị của các hàm số sau: Bài 3. Tìm cực trị các hàm số Bài 4. Tìm cực trị các hàm số: Bài 5. Xác định m để hàm số Bài 6. Tìm m để hàm số Bài 7. Tìm m để hàm số Bài 8. Tìm m để hàm số Bài 9. Tìm các hệ số a, b, c sao cho hàm số: đạt cực tiểu tại điểm x = 1, f(1) = -3 và đồ thị cắt trục tung tại điểm có tung độ bằng 2 Bài 10. Tìm các số thực q, p sao cho hàm số đạt cực đại tại điểm x = -2 và f(-2) = -2 Bài 11. Tìm m để hàm số Bài 12. Tìm m để hàm sô luôn có cực đại và cực tiểu. Bài 13. Cho hàm số . Tìm a để hàm số có cực đại, cực tiểu và các điểm cực tiểu của đồ thị cách đều trục tung. Bài 14. Hàm số . Tìm m để hàm số có cực đại cực tiểu. Bài 15. Cho hàm . Tìm m để hàm số có cực trị Bài 16. Cho hàm số . Xác định m để hàm số có cực đại và cực tiểu. GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ DẠNG 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số Để tìm GTLN, GTNN của hàm số y = f(x) trên : +B1: Tính đạo hàm của hàm số y’ = f’(x) + B2: Xét dấu đạo hàm f’(x), lập bảng biến thiên Trong đó tại x0 thì f’(x0) bằng 0 hoặc không xác định Để tìm GTLN, GTNN của hàm số y = f(x) trên [a; b]: B1: Tìm caùc giaù trò xi (i = 1, 2, ..., n) laøm cho ñaïo haøm baèng 0 hoaëc khoâng xaùc ñònh . B2: Tính B3: GTLN = max{} GTNN = Min{} Ví dụ 1. Tìm giá trị lớn nhất và nhỏ nhất của hàm số trên khoảng Hướng dẫn: Dễ thầy h àm số liên tục trên . Dễ thấy Vậy Minf(x) = 2 khi x = 1 và hàm số không có giá trị lớn nhất. Ví dụ 2. Tính GTLN, GTNN của hàm số trên đoạn [-4; 0] Hướng dẫn Hàm số liên tục trên [-4; 0], Bài 1. Tìm GTLN, GTNN của hàm số (nếu có): Bài 2. Tìm GTLN, GTNN của hàm số (nếu có): TIỆM CẬN CỦA HÀM SỐ I. Kiến thức cần nắm Cho hàm số y = f(x) có đồ thị là (C) y = y0 là tiệm cận ngang của nếu một trong hai điệu kiên sau được thoả mãn: x = x0 là tiệm cận đứng của (C) nếu một trong các điều kiện sau đựơc thoả mãn: Đường thẳng y = ax + b ( ) được gọi là tiệm cận xiên nếu một trong hai điều kiện sau thoả mãn: II. Các dạng toán Dạng 1: Tiệm cận hàm số hữu tỉ Phương pháp Tiệm cận đứng: Nghiệm của mẫu không phải là nghiệm của tử cho phép xác định tiệm cận đứng. Tiệm cận ngang, xiên: + Det(P(x)) < Det (Q(x)): Tiệm cận ngang y = 0 + Det(P(x)) = Det(Q(x)): Tiệm cận ngang là tỉ số hai hệ số bậc cao nhất của tử và mẫu. + Det (P(x)) = Det(Q(x)) + 1: Không có tiệm cận ngang; Tiệm cận xiên được xác định bằng cách phân tích hàm số thành dạng: f(x) = ax + b + với thì y = ax + b là tiệm cận xiên. Ví dụ 1. Tìm các tiệm cận của các hàm số: Hướng dẫn a. Ta thấy nên đường thẳng x= 2 là tiệm cận đứng. Vì nên y = 2 là tiệm cận ngang của đồ thị hàm số. b. + . Nên x = 3 là tiệm cận đứng của đồ thị hàm số. + . Ta thấy Vậy y = x+ 2 là tiệm cân xiên của đồ thị hàm số. c. Ta thấy Nên x = 1 là đường tiệm cận đứng. + . Nên x = -1 là tiệm cận đứng. + . Nên y = 0 là tiệm cận ngang của đồ thị hàm số. Dạng 2. Tiệm cận của hàm vô tỉ Phương pháp Ta phân tích Với khi đó có tiệm cận xiên bên phải Với khi đó có tiệm cận xiên bên tr ái VÝ dô T×m tiÖm cËn cña hµm sè: Híng dÉn C¸c tÝnh giíi h¹n v« cùc cña hµm sè DÊu cña g(x) L Tuú ý 0 L > 0 0 + + - - L < 0 0 - + + - Bµi 1. T×m tiÖm cËn c¸c hµm sè sau: Bµi 2. T×m tiÖm cËn cña c¸c hµm sè sau: Bµi 3. T×m tiÖm cËn c¸c hµm sè Bµi 4. X¸c ®Þnh m ®Ó ®å thÞ hµm sè: cã ®óng 2 tiÖm cËn ®øng. Bµi 5. TÝnh diÖn tÝch cña tam gi¸c t¹o bëi tiÖm cËn xiªn cña ®å thÞ t¹o víi hai trôc to¹ ®é cña c¸c hµm sè: Bµi 6.(§HSP 2000). T×m m ®Ó tiÖm cËn xiªn cña ®å thÞ hµm sè t¹o víi hai trôc to¹ ®é mét tam gi¸c cã diÖn tÝch b»ng 8 (®vdt) Bµi 7. Cho hµm sè: (1) T×m m ®Ó tiÖm cËn xiªn cña ®å thÞ ®i qua ®iÓm T×m m ®Ó ®êng tiÖm cËn xiªn cña (1) c¾t Parabol t¹i hai ®iÓm ph©n biÖt. [4. kh¶o s¸t vµ vÏ hµm bËc ba D¹ng 1: Kh¶o s¸t vµ vÏ hµm sè Ph¬ng ph¸p T×m tËp x¸c ®Þnh. XÐt sù biÕn thiªn cña hµm sè T×m c¸c giíi h¹n t¹i v« cùc vµ c¸c giíi h¹n t¹i v« cùc (nÕu cã). T×m c¸c ®êng tiÖm cËn. LËp b¶ng biÕn thiªn cña hµm sè, bao gåm: + T×m ®¹o hµm, xÐt dÊu ®¹o hµm, xÐt chiÒu biÕn thiªn vµ t×m cùc trÞ. + §iÒn c¸c kÕt qu¶ vµo b¶ng. 3. VÏ ®å thÞ cña hµm sè. + VÏ ®êng tiÖm cËn nÕu cã. + X¸c ®Þnh mét sè ®iÓm ®Æc biÖt: Giao víi Ox, Oy, ®iÓm uèn. + NhËn xÐt ®å thÞ: ChØ ra t©m ®èi xøng, trôc ®èi xøng (kh«ng cÇn chøng minh) VÝ dô 1. Cho hµm sè: Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ cña hµm sè. Tuú theo gi¸ trÞ cña m, biÖn luËn sè nghiÖm cña ph¬ng tr×nh: Híng dÉn a. 1. TX§: 2. Sù biÕn thiªn cña hµm sè a. Giíi h¹n t¹i v« cùc B¶ng biÕn thiªn Hµm sè ®ång biÕn trªn c¸c kho¶ng Vµ nghÞch biÕn trªn kho¶ng (0; 2). Hµm sè ®¹t cùc ®¹i t¹i ®iÓm x= 2 ; vµ yC§=y(2)= 3 Hµm sè ®¹t cùc tiÓu t¹i ®iÓm x =0 vµ yCT = y(1) = -1 3. §å thÞ + Giao víi Oy: cho x = 0 . Vëy giao víi Oy t¹i ®iÓm O(0; -1) + . §iÓm A (1; 1) + NhËn ®iÓm A lµm t©m ®èi xøng. b. Sè nghiÖm cña ph¬ng tr×nh lµ sè giao ®iÓm cña 2 ®å thÞ vµ y =m Dùa vµo ®å thÞ ta cã kÕt qu¶ biÖn luËn: m > 3: Ph¬ng tr×nh cã 1 nghiÖm. C¸c bµi to¸n vÒ hµm bËc ba Bµi 1(TNTHPT – 2008) Cho hµm sè Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ cña hµm sè. BiÖm luËn theo m sè nghiÖm cña ph¬ng tr×nh Bµi 2 (TN THPT- lÇn 2 – 2008) Cho hµm sè y = x3 - 3x2 Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ hµm sè ®· cho. T×m c¸c gi¸ trÞ cña m ®Ó ph¬ng tr×nh cã 3 nghiÖm ph©n biÖt. Bài 3 (TNTHPT - 2007) Cho hàm số y= có đồ thị là (C) . a/ Khảo sát và vẽ đồ thị hàm số . b/ Viết phương trình tiếp tuyến tại điểm A(2 ;4) . Bài 4 (TNTHPT - 2006) Cho hàm số y= có đồ thị (C) . a/ Khảo sát và vẽ đồ thị hàm số . b/ Dựa vào đồ thị biện luận số nghiệm phương trình : -m=0 . Bài 5 (TNTHPT – 2004- PB) Cho hàm số y= có đồ thị là (C) . a/ Khảo sát và vẽ đồ thị hàm số . b/ Viết phương trình tiếp tuyến tại điểm cã hoµnh ®é lµ nghiÖm cña ph¬ng tr×nh y’’=0 . c/ Với giá trị nào của m thì đường thẳng y=x+m2-m đi qua trung điểm của đoạn thẳng nối cực đại vào cực tiểu . Bài 6 (TNTHPT – 2004 - KPB) Cho hàm số y= . a/ Khảo sát và vẽ đồ thị hàm số khi m=1 . b/ Viết phương trình tiếp tuyến tại điểm có hoành độ x=1 . Bµi 7 (§H- A- 2002) Cho hµm sè Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ hµm sè víi m= 1 T×m k ®Ó ph¬ng tr×nh: cã 3 nghiÖm ph©n biÖt. ViÕt ph¬ng tr×nh ®êng th¼ng qua 2 ®iÓm cùc trÞ cña ®å thÞ hµm sè (1). Bµi 8 (C§ SP MGTW- 2004) Cho hµm sè y = x3 - 3x2 + 4m Chøng minh ®å thÞ hµm sè lu«n cã 2 cùc trÞ. Kh¶o s¸t vµ vÏ ®å thÞ hµm sè khi m = 1 Bµi 9 (§H-B- 2007) Cho hµm sè Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ hµm sè víi m =1 T×m m ®Ó hµm sè cã cùc ®¹i cùc tiÓu vµ c¸c ®iÓm cùc trÞ c¸ch ®Òu ®iÓm O. Bµi 10 (§H - D - 2004) Cho hµm sè y = x3 – 3mx2 + 9x + 1 Kh¶o s¸t vµ vÏ ®å thÞ hµm sè víi m = 2 T×m m ®Ó nghiÖm cña ph¬ng tr×nh y’’= 0 thuéc ®êng th¼ng y = x+ 1 Bµi 1 Cho hµm sè y = (x -1)(x2 + mx + m) T×m m ®Ó ®å thÞ hµm sè c¾t trôc hoµnh t¹i 3 ®iÓm ph©n biÖt Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ cña hµm sè víi m= 4 Bµi 2 Cho hµm sè Kh¶o s¸t vµ vÏ ®å thÞ hµm sè víi m =2 Víi gi¸ trÞ nµo cña m hµm sè cã cùc ®¹i, cùc tiÓu. Bµi 3 (§H 2006- D) Cho hµm sè Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ (C) cña hµm sè. Gäi d lµ ®êng th¼ng qua ®iÓm A(3; 20) vµ cã hÖ sè gãc m. T×m m ®Ó ®êng th¼ng d c¾t (C ) t¹i 3 ®iÓm phÇn biÖt. (Gîi ý ®êng th¼ng d qua M(x0;y0) cã hÖ sè gãc m cã d¹ng: y = m(x - x0) + y 0) Bµi 4 Cho hµm sè y = (x - m)3 - 3x Kh¶o s¸t vµ vÏ ®å thÞ hµm sè víi m = 1 T×m m ®Ó hµm sè ®· cho ®¹t cùc tiÓu t¹i ®iÓm cã hoµnh ®é x = 0 Bµi 5 Cho hµm sè y = (x -1)(x2 + mx + m) T×m m ®Ó ®å thÞ hµm sè c¾t trôc hoµnh t¹i 3 ®iÓm ph©n biÖt Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ cña hµm sè víi m= 4 Bµi 6 Cho hµm sè y = Kh¶o s¸t vµ vÏ ®å thÞ hµm sè khi m =1 T×m m ®Ó hµm sè ®¹t cùc tiÓu t¹i x = 1 Hµm bËc bèn trïng ph¬ng vµ mét sè bµi tËp cã liªn quan I. Mét sè tÝnh chÊt cña hµm trïng ph¬ng Hµm sè lu«n cã cùc trÞ víi mäi gi¸ trÞ cña tham sè sao cho Hµm sè ®¹t gi¸ trÞ cùc ®¹i, cùc tiÓu cã ba nghiÖm ph©n biÖt §å thÞ hµm sè lu«n nhËn Oy lµ trôc ®èi xøng. NÕu hµm sè cã ba cùc trÞ trÞ chóng t¹o thµnh mét tam gi¸c c©n. D¹ng to¸n: Kh¶o s¸t vµ vÏ ®å thÞ cña hµm sè VÝ dô 1 (TNTHPT-2008) Cho hµm sè Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ cña hµm sè. ViÕt ph¬ng tr×nh tiÕp tuyÕn cña ®å thÞ hµm sè t¹i ®iÓm cã hoµnh ®é x = -2 VÝ dô 2. Cho hµm sè Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ hµm sè víi m =0 Víi gi¸ trÞ nµo cña m hµm sè cã 3 cùc trÞ Bµi tËp hµm sè trïng ph¬ng Bµi 1. Kh¶o s¸t vµ vÏ ®å thÞ c¸c hµm sè sau: Bµi 2. Cho hµm sè Kh¶o s¸t vµ vÏ ®å thÞ hµm sè víi m =1 T×m m ®Ó ®å thÞ hµm sè cã ba cùc trÞ lµ ba ®Ønh cña tam gi¸c vu«ng c©n. Bµi 3 (§H §µ L¹t - 2002) Gi¶i ph¬ng tr×nh Kh¶o s¸t vµ vÏ ®å thÞ hµm sè y = BiÖn luËn theo m sè nghiÖm cña ph¬ng tr×nh Bµi 4 (§H Th¸i Nguyªn - 2002) Cho hµm sè Kh¶o s¸t vµ vÏ ®å thÞ hµm sè víi m = 1 H·y x¸c ®Þnh m ®Ó hµm sè ®å thÞ hµm sè cã 3 cùc trÞ Bµi 5. (§H Vinh - 2002) Kh¶o s¸t vµ vÏ ®å thÞ hµm sè X¸c ®Þnh m ®Ó ph¬ng tr×nh cã 4 nghiÖm ph©n biÖt. Bµi 6 Cho hµm sè Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ (C) cña hµm sè BiÖn luËn theo k sè giao ®iÓm cña (C) víi ®å thÞ (P) cña hµm sè Bµi 7 Cho hµm sè Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ cña hµm sè khi m = 1 X¸c ®Þnh m ®Ó ®å thÞ cña hµm sè ®· cho tiÕp xóc víi trôc hoµnh t¹i 2 ®iÓm Bµi 8. (§H CÇn th¬ - 2002) Cho hµm sè (Cm) Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ hµm sè víi m = 0 T×m c¸c gi¸ trÞ cña m ®Ó ®å thÞ (Cm) cña hµm sè chØ cã hai ®iÓm chung víi Ox Chøng minh víi mäi m tam gi¸c cã 3 ®Ønh lµ ba cùc trÞ lµ mét tam gi¸c vu«ng c©n.
File đính kèm:
- chuyen de ve HAM SO 12.doc