Đề cương ôn tập môn Toán Lớp 9 (Đợt 5)
Bài 1 :Hai ô tô khởi hành cùng một lúc đi từ A đến B cách nhau 300 km . Ô tô thứ nhất mỗi giờ chạy nhanh hơn ô tô thứ hai 10 km nên đến B sớm hơn ô tô thứ hai 1 giờ . Tính vận tốc mỗi xe ô tô .
ĐỀ CƯƠNG ÔN TẬP MÔN TOÁN 9 ( TỪ 2/3/2020 – 8/3/2020) *Dạng 1: Rút gọn Cho biểu thức: P= Rút gọn P Tìm giá trị của a để P > *Dạng 2: Các bài tập về hệ phương trình bậc nhất 2 ẩn: Bài 1: Tìm giá trị của m để hệ phương trình ; Có nghiệm duy nhất Bài 2:Cho hệ phương trình : Giải hệ phương rình khi a= - 2 Xác định giá trị của a để hệ có nghiệm duy nhất thoả mãn điều kiện: x + y > 0 Bài 3 : Cho hệ phương trình : 1) Giải hệ phương trình theo tham số m. 2) Gọi nghiệm của hệ phương trình là (x, y). Tìm các giá trị của m để x + y = -1. 3) Tìm đẳng thức liên hệ giữa x và y không phụ thuộc vào m. Bài 4 : Cho hệ phương trình: có nghiệm duy nhất là (x; y). a) Tìm đẳng thức liên hệ giữa x và y không phụ thuộc vào a. b) Tìm các giá trị của a thoả mãn 6x2 – 17y = 5. *Dạng 3: Giải bài toán bằng cách lập phương trình: Bài 1 :Hai ô tô khởi hành cùng một lúc đi từ A đến B cách nhau 300 km . Ô tô thứ nhất mỗi giờ chạy nhanh hơn ô tô thứ hai 10 km nên đến B sớm hơn ô tô thứ hai 1 giờ . Tính vận tốc mỗi xe ô tô . Bài 2: Một nhóm thợ đặt kế hoạch sản xuất 1200 sản phẩm. Trong 12 ngày đầu họ làm theo đúng kế hoạch đề ra, những ngày còn lại họ đã làm vượt mức mỗi ngày 20 sản phẩm, nên hoàn thành kế hoạch sớm 2 ngày. Hỏi theo kế hoạch mỗi ngày cần sản xuất bao nhiêu sản phẩm. Bài 3: Một đoàn xe vận tải dự định điều một số xe cùng loại để vận chuyển 40 tấn hàng. Lúc sắp khởi hành đoàn xe được giao thêm 14 tấn hàng nữa do đó phải điều thêm 2 xe cùng loại trên và mỗi xe chở thêm 0,5 tấn hàng. Tính số xe ban đầu biết số xe của đội không quá 12 xe. Bài 4: Một ca nô đi xuôi từ bến A đến bến B, cùng lúc đó một người đi bộ cũng đi từ bến A dọc theo bờ sôngvề hướng bến B. Sau khi chạy được 24 km, ca nô quay chở lại gặp người đi bộ tại một địa điểm D cách bến A một khoảng 8 km. Tính vận tốc của ca nô khi nước yên lặng, biết vận tốc của người đi bộ và vận tốc của dòng nước đều bằng nhau và bằng 4 km/h Bài 5: Hai vòi nước cùng chảy vào một cái bể chứa không có nước thì sau 2 giờ 55 phút sẽ đầy bể . Nếu chảy riêng thì vòi thứ nhất chảy đầy bể nhanh hơn vòi thứ hai 2 giờ . Hỏi nếu chảy riêng thì mỗi vòi chảy đầy bể trong bao lâu Bài 6: Một cơ sở đánh cá dự định trung bình mỗi tuần đánh bắt được 20 tấn cá , nhưng đã vượt mức được 6 tấn mỗi tuần nên chẳng những đã hoàn thành kế hoạch sớm 1 tuần mà còn vượt mức kế hoạch 10 tấn . Tính mức kế hoạch đã định Bài 7: Một người đi xe đạp từ A đến B trong một thời gian đã định . Khi còn cách B 30 Km , người đó nhận thấy rằng sẽ đến B chậm nửa giờ nếu giữ nguyên vận tốc đang đi , nhưng nếu tăng vận tốc thêm 5 Km/h thì sẽ tới đích sớm hơn nửa giờ .Tính vận tốc của xe đạp tren quãng đường đã đi lúc đầu. Bài 8: Hai tổ công nhân làm chung trong 12 giờ sẽ hoàn thành xong công việc đã định . Họ làm chung với nhau trong 4 giờ thì tổ thứ nhất được điều đi làm việc khác , tổ thứ hai làm nốt công việc còn lại trong 10 giờ . Hỏi tổ thứ hai làm một mình thì sau bao lâu sẽ hoàn thành công việc. *Dạng 4: Tứ giác nội tiếp Dấu hiệu nhận biết tứ giác nội tiếp: có các dấu hiệu sau( các cách chứng minh) 1-Tứ giác có tổng hai góc đối nhau bằng 1800 . 2-Tứ giác có góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối của đỉnh đó. 3-Tứ giác có bốn đỉnh cách đều một điểm. Điểm đó là tâm của đường tròn ngoại tiếp tứ giác. 4-Tứ giác có hai đỉnh kề nhau cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc không đổi. Câu 1: Cho hình bình hành ABCD có đỉnh D nằm trên đường tròn đường kính AB. Hạ BN và DM cùng vuông góc với đường chéo AC. Chứng minh: Tứ giác CBMD nội tiếp. Khi điểm D di động trên trên đường tròn thì + không đổi. DB . DC = DN . AC Câu 2: Cho đường tròn tâm O. A là một điểm ở ngoài đường tròn, từ A kẻ tiếp tuyến AM, AN với đường tròn, cát tuyến từ A cắt đường tròn tại B và C ( B nằm giữa A và C ) . Gọi I là trung điểm của BC. Chứng minh rằng 5 điểm A, M, I, O, N nằm trên một đường tròn. 2) Một đường thẳng qua B song song với AM cắt MN và MC lần lượt tại E và F. Chứng minh tứ giác BENI là tứ giác nội tiếp và E là trung điểm của EF Câu 3: Cho tam giác ABC , góc B và góc C nhọn. Các đường tròn đường kính AB, AC cắt nhau tại D. Một đường thẳng qua A cắt đường tròn đường kính AB, AC lần lượt tại E và F. Chứng minh B , C , D thẳng hàng. Chứng minh B, C , E , F nằm trên một đường tròn. Xác định vị trí của đường thẳng qua A để EF có độ dài lớn nhất. Câu 4: Cho tam giác ABC vuông ở A và một điểm D nằm giữa A và B. Đường tròn đường kính BD cắt BC tại E. Các đường thẳng CD, AE lần lượt cắt đường tròn tại các điểm thứ hai F, G. Chứng minh: a) Tam giác ABC đồng dạng với tam giác EBD. b) Tứ giác ADEC và AFBC nội tiếp được trong một đường tròn. c) AC song song với FG. d) Các đường thẳng AC, DE và BF đồng quy. Câu 5: Cho tam giác ABC nội tiếp đường tròn tâm O. M là một điểm trên cung AC ( không chứa B ) kẻ MH vuông góc với AC ; MK vuông góc với BC. 1) Chứng minh tứ giác MHKC là tứ giác nội tiếp. 2) Chứng minh góc AMB = góc HMK. 3) Chứng minh D AMB đồng dạng với D HMK. Câu 6: Cho đường tròn tâm O và điểm A nằm ngoài đường tròn đó. Vẽ các tiếp tuyến AB, AC và cát tuyến ADE tới đường tròn (B và C là tiếp điểm). Gọi H là trung điểm của DE. CMR: A,B, H, O, C cùng thuộc một đường tròn. Xác định tâm của đường tròn đó. CMR: HA là tia phân giác của góc BHC. Gọi I là giao điểm của BC và DE. CMR: AB2 = AI.AH BH cắt (O) ở K. Chứng minh rằng: AE song song CK. Câu 7: Cho ba điểm A , B , C trên một đường thẳng theo thứ tự ấy và đường thẳng (d) vuông góc với AC tại A . Vẽ đường tròn đường kính BC và trên đó lấy điểm M bất kì . Tia CM cắt đường thẳng d tại D ; tia AM cắt đường tròn tại điểm thứ hai N ; tia DB cắt đường tròn tại điểm thứ hai P. CMR tứ giác ABMD nội tiếp được b) CMR : CM.CD không phụ thuộc vị trí của M
File đính kèm:
- de_cuong_on_tap_mon_toan_lop_9_dot_5.doc