Đề đề nghị thi HSG đồng bằng sông Cửu Long năm học 2008 – 2009 - Môn Toán Trường THPTchuyên Bến Tre
Câu 2 (3đ):
Cho một đường tròn với hai dây AB và CD không song song. Đường vuông góc với AB kẻ từ A cắt đường vuông góc với CD kẻ từ C và từ D lần lượt tại M và P. Đường vuông góc với AB kẻ từ B cắt đường vuông góc với CD kẻ từ C và từ D lần lượt tại Q và N. Chứng minh rằng các đường thẳng AD, BC, MN đồng quy; các đường thẳng AC, BD, PQ đồng quy.
SỞ GD&ĐT BẾN TRE KỲ THI HỌC SINH GIỎI TRƯỜNG THPT CHUYÊN BẾN TRE ĐỒNG BẰNG SÔNG CỬU LONG Năm học 2008 – 2009 ĐỀ THI ĐỀ NGHỊ MÔN TOÁN Thời gian: 180 phút Câu 1 (3đ) : Giải hệ phương trình: Câu 2 (3đ): Cho một đường tròn với hai dây AB và CD không song song. Đường vuông góc với AB kẻ từ A cắt đường vuông góc với CD kẻ từ C và từ D lần lượt tại M và P. Đường vuông góc với AB kẻ từ B cắt đường vuông góc với CD kẻ từ C và từ D lần lượt tại Q và N. Chứng minh rằng các đường thẳng AD, BC, MN đồng quy; các đường thẳng AC, BD, PQ đồng quy. Câu 3 (2đ): Tìm nghiệm nguyên của phương trình : Câu 4 (3đ): Cho dãy số xác định như sau : Tìm Câu 5 (3đ): Cho hai số tự nhiên n, k thỏa : . Chứng minh rằng : Câu 6 (3đ): Cho x, y, z là các số dương thỏa mãn điều kiện: Tìm giá trị nhỏ nhất của biểu thức: Câu 7 (3đ): Cho hình lập phương ABCD.A’B’C’D’ cạnh a .Các điểm X,Y,Z lần lượt di động trên các cạnh C’D’, AD, BB’. Định vị trí của X,Y,Z để chu vi tam giác XYZ nhỏ nhất.
File đính kèm:
- DE TOAN.doc
- DA TOAN.doc