Đề thi chọn học sinh giỏi môn Toán Lớp 9 - Năm học 2014-2015 - Phòng GD&ĐT Hải Dương

Câu 4:

1. Cho hai đường tròn đồng tâm (O; R) và (O; r) với R > r. Lấy A và E là hai điểm thuộc đường tròn (O; r), trong đó A di động, E cố định ( với A ≠ E). Qua E vẽ một đường thẳng vuông góc với AE cắt đường tròn (O; R) ở B và C. Gọi giao điểm của AE với (O ; R) là I và K, M là trung điểm của đoạn thẳng AB .

a) Chứng minh BC2 + IK2 không phụ thuộc vị trí điểm A .

b) Chứng minh rằng khi điểm A di động trên đường tròn (O; r) và A≠ E thì đường thẳng CM luôn đi qua một điểm cố định.

2. Cho đường tròn tâm O đường kính AB bán kính R. Tiếp tuyến tại điểm M bất kỳ trên đường tròn (O) cắt các tiếp tuyến tại A và B lần lượt tại C và D. Tìm vị trí của điểm M để chu vi tam giác COD là nhỏ nhất .

 

doc2 trang | Chia sẻ: Đạt Toàn | Ngày: 12/05/2023 | Lượt xem: 201 | Lượt tải: 0download
Bạn đang xem nội dung Đề thi chọn học sinh giỏi môn Toán Lớp 9 - Năm học 2014-2015 - Phòng GD&ĐT Hải Dương, để tải tài liệu về máy bạn hãy click vào nút TẢI VỀ
PHÒNG GD & ĐT TP HẢI DƯƠNG
ĐỀ CHÍNH THỨC
ĐỀ THI CHỌN HỌC SINH GIỎI NĂM HỌC 2014-2015
MÔN THI: TOÁN
Thời gian làm bài: 150 phút
(Đề thi gồm 05 câu, 01 trang)
Ngày thi 16 tháng 01 năm 2015 
Câu 1 (2 điểm): a) Phân tích đa thức thành nhân tử : 
 b) Chøng minh ®¼ng thøc: 
Câu 2 (2 điểm): a) Giải phương trình: 
 b) Giải hệ phương trình 
Câu 3 (2 điểm): a) Trong mặt phẳng Oxy, cho đường thẳng (d) có phương trình (m là tham số). Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng (d) là lớn nhất.
b) Tìm các số tự nhiên có 2 chữ số sao cho: 
Câu 4 ( 3 điểm):
1. Cho hai đường tròn đồng tâm (O; R) và (O; r) với R > r. Lấy A và E là hai điểm thuộc đường tròn (O; r), trong đó A di động, E cố định ( với A ≠ E). Qua E vẽ một đường thẳng vuông góc với AE cắt đường tròn (O; R) ở B và C. Gọi giao điểm của AE với (O ; R) là I và K, M là trung điểm của đoạn thẳng AB .
a) Chứng minh BC2 + IK2 không phụ thuộc vị trí điểm A .
b) Chứng minh rằng khi điểm A di động trên đường tròn (O; r) và A≠ E thì đường thẳng CM luôn đi qua một điểm cố định. 
2. Cho đường tròn tâm O đường kính AB bán kính R. Tiếp tuyến tại điểm M bất kỳ trên đường tròn (O) cắt các tiếp tuyến tại A và B lần lượt tại C và D. Tìm vị trí của điểm M để chu vi tam giác COD là nhỏ nhất .
Câu 5 (1 điểm): Cho ba số dương thoả mãn: 
 Chứng minh rằng: 
----------- Hết-------------
SBD: ................... Họ và tên thí sinh: .......................................................................
Giám thị 1: ................................................... Giám thị 2: ..........................................

File đính kèm:

  • docde_thi_chon_hoc_sinh_gioi_mon_toan_lop_9_nam_hoc_2014_2015_p.doc