Đề thi chọn học sinh giỏi môn Toán Lớp 9 - Năm học 2014-2015 - Phòng GD&ĐT Hải Dương
Câu 4:
1. Cho hai đường tròn đồng tâm (O; R) và (O; r) với R > r. Lấy A và E là hai điểm thuộc đường tròn (O; r), trong đó A di động, E cố định ( với A ≠ E). Qua E vẽ một đường thẳng vuông góc với AE cắt đường tròn (O; R) ở B và C. Gọi giao điểm của AE với (O ; R) là I và K, M là trung điểm của đoạn thẳng AB .
a) Chứng minh BC2 + IK2 không phụ thuộc vị trí điểm A .
b) Chứng minh rằng khi điểm A di động trên đường tròn (O; r) và A≠ E thì đường thẳng CM luôn đi qua một điểm cố định.
2. Cho đường tròn tâm O đường kính AB bán kính R. Tiếp tuyến tại điểm M bất kỳ trên đường tròn (O) cắt các tiếp tuyến tại A và B lần lượt tại C và D. Tìm vị trí của điểm M để chu vi tam giác COD là nhỏ nhất .
PHÒNG GD & ĐT TP HẢI DƯƠNG ĐỀ CHÍNH THỨC ĐỀ THI CHỌN HỌC SINH GIỎI NĂM HỌC 2014-2015 MÔN THI: TOÁN Thời gian làm bài: 150 phút (Đề thi gồm 05 câu, 01 trang) Ngày thi 16 tháng 01 năm 2015 Câu 1 (2 điểm): a) Phân tích đa thức thành nhân tử : b) Chøng minh ®¼ng thøc: Câu 2 (2 điểm): a) Giải phương trình: b) Giải hệ phương trình Câu 3 (2 điểm): a) Trong mặt phẳng Oxy, cho đường thẳng (d) có phương trình (m là tham số). Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng (d) là lớn nhất. b) Tìm các số tự nhiên có 2 chữ số sao cho: Câu 4 ( 3 điểm): 1. Cho hai đường tròn đồng tâm (O; R) và (O; r) với R > r. Lấy A và E là hai điểm thuộc đường tròn (O; r), trong đó A di động, E cố định ( với A ≠ E). Qua E vẽ một đường thẳng vuông góc với AE cắt đường tròn (O; R) ở B và C. Gọi giao điểm của AE với (O ; R) là I và K, M là trung điểm của đoạn thẳng AB . a) Chứng minh BC2 + IK2 không phụ thuộc vị trí điểm A . b) Chứng minh rằng khi điểm A di động trên đường tròn (O; r) và A≠ E thì đường thẳng CM luôn đi qua một điểm cố định. 2. Cho đường tròn tâm O đường kính AB bán kính R. Tiếp tuyến tại điểm M bất kỳ trên đường tròn (O) cắt các tiếp tuyến tại A và B lần lượt tại C và D. Tìm vị trí của điểm M để chu vi tam giác COD là nhỏ nhất . Câu 5 (1 điểm): Cho ba số dương thoả mãn: Chứng minh rằng: ----------- Hết------------- SBD: ................... Họ và tên thí sinh: ....................................................................... Giám thị 1: ................................................... Giám thị 2: ..........................................
File đính kèm:
- de_thi_chon_hoc_sinh_gioi_mon_toan_lop_9_nam_hoc_2014_2015_p.doc