Đề thi chọn học sinh giỏi Tỉnh môn Toán Lớp 9 THCS - Năm học 2014-2015 - Sở GD&ĐT Hải Dương
Câu 4: Cho đường tròn (O;R) đường kính BC. Gọi A là điểm thỏa mãn tam giác ABC nhọn. AB, AC cắt đường tròn trên tại điểm thứ hai tương ứng là E và D. Trên cung không chứa D lấy F(F B, C). AF cắt BC tại M, cắt đường tròn (O;R) tại N(N F) và cắt đường tròn ngoại tiếp tam giác ADE tại P(P A).
a) Giả sử BAC = 60 độ , tính DE theo R.
b) Chứng minh AN.AF = AP.AM
ĐỀ THI CHÍNH THỨC SỞ GD&ĐT HẢI DƯƠNG KÌ THI CHỌN HỌC SINH GIỎI TỈNH LỚP 9 THCS NĂM HỌC 2014 – 2015 MÔN THI: TOÁN Thời gian làm bài: 150 phút (không kể thời gian giao đề) Ngày thi: 24/03/2015 ( Đề thi gồm có 01 trang ) Câu 1 (2,0 điểm): Tính giá trị của biểu thức: A = với b) Cho x, y thỏa mãn: Chứng minh: Câu 2 (2,0 điểm): a) Giải phương trình b) Gi¶i hÖ ph¬ng tr×nh sau: Câu 3 (2,0 điểm): a) Tìm số nguyên tố p sao cho các số đều là số nguyên tố. b) Tìm các số nguyên dương x, y, z thỏa mãn: . Câu 4 (3,0 điểm): Cho đường tròn (O;R) đường kính BC. Gọi A là điểm thỏa mãn tam giác ABC nhọn. AB, AC cắt đường tròn trên tại điểm thứ hai tương ứng là E và D. Trên cung không chứa D lấy F(F B, C). AF cắt BC tại M, cắt đường tròn (O;R) tại N(N F) và cắt đường tròn ngoại tiếp tam giác ADE tại P(P A). a) Giả sử , tính DE theo R. b) Chứng minh AN.AF = AP.AM c) Gọi I, H thứ tự là hình chiếu vuông góc của F trên các đường thẳng BD, BC. Các đường thẳng IH và CD cắt nhau ở K. Tìm vị trí của F trên cung để biểu thức đạt giá trị nhỏ nhất. Câu 5 (1,0 điểm): Cho các số dương x, y, z thay đổi thỏa mãn: . Tìm giá trị lớn nhất của biểu thức: . ------------- HẾT ------------ Họ và tên thí sinh: Số báo danh . Chữ kí giám thị 1 Chữ kí giám thị 2 .. --Hết--
File đính kèm:
- de_thi_chon_hoc_sinh_gioi_tinh_mon_toan_lop_9_thcs_nam_hoc_2.doc