Đề thi tuyển sinh đại học, cao đẳng năm 2002 Môn thi: Toán, Khối B
2. Cho hình lập phương ABCDA1B1C1D1 có cạnh bằng a .
a) Tính theo a khoảng cách giữa hai đường thẳng A1B và B1D .
b) Gọi M , N, P lần lượt là các trung điểm của các cạnh BB1,CD , A1D1. Tính góc giữa
hai đường thẳng MP và C1N .
bộ giáo dục và đào tạo kỳ thi tuyển sinh đại học, cao Đẳng năm 2002 đề chính thức Môn thi : toán, Khối B. (Thời gian làm bài : 180 phút) _____________________________________________ Câu I. (ĐH : 2,0 điểm; CĐ : 2,5 điểm) Cho hàm số : ( ) 109 224 +−+= xmmxy (1) (m là tham số). 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi 1=m . 2. Tìm m để hàm số (1) có ba điểm cực trị. Câu II. (ĐH : 3,0 điểm; CĐ : 3,0 điểm) 1. Giải ph−ơng trình: xxxx 6cos5sin4cos3sin 2222 −=− . 2. Giải bất ph−ơng trình: ( ) 1)729(loglog 3 ≤−xx . 3. Giải hệ ph−ơng trình: ++=+ −=− .2 3 yxyx yxyx Câu III. ( ĐH : 1,0 điểm; CĐ : 1,5 điểm) Tính diện tích của hình phẳng giới hạn bởi các đ−ờng : 4 4 2xy −= và 24 2xy = . Câu IV.(ĐH : 3,0 điểm ; CĐ : 3,0 điểm) 1. Trong mặt phẳng với hệ tọa độ Đêcac vuông góc Oxy cho hình chữ nhật ABCD có tâm 0; 2 1I , ph−ơng trình đ−ờng thẳng AB là 022 =+− yx và ADAB 2= . Tìm tọa độ các đỉnh DCBA ,,, biết rằng đỉnh A có hoành độ âm. 2. Cho hình lập ph−ơng 1111 DCBABCDA có cạnh bằng a . a) Tính theo a khoảng cách giữa hai đ−ờng thẳng BA1 và DB1 . b) Gọi PNM ,, lần l−ợt là các trung điểm của các cạnh CDBB ,1 , 11DA . Tính góc giữa hai đ−ờng thẳng MP và NC1 . Câu V. (ĐH : 1,0 điểm) Cho đa giác đều nAAA 221 L ,2( ≥n n nguyên ) nội tiếp đ−ờng tròn ( )O . Biết rằng số tam giác có các đỉnh là 3 trong n2 điểm nAAA 221 ,,, L nhiều gấp 20 lần số hình chữ nhật có các đỉnh là 4 trong n2 điểm nAAA 221 ,,, L , tìm n . --------------------------------------Hết------------------------------------------- Ghi chú : 1) Thí sinh chỉ thi cao đẳng không làm Câu IV 2. b) và Câu V. 2) Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh:................................................................... Số báo danh:...............................
File đính kèm:
- De_Toan_B 02.pdf
- DA_Toan_B 02.pdf