Đề thi tuyển sinh môn Toán Lớp 10 THPT chuyên Nguyễn Trãi - Năm học 2009-2010 - Sở Giáo dục và Đào tạo Hải Dương
Câu IV :
Cho tam giác MNP có ba góc nhọn và các điểm A, B, C lần lượt là hình chiếu vuông góc của M, N, P trên NP, MP, MN. Trên các đoạn thẳng AC, AB lần lượt lấy D, E sao cho DE song song với NP. Trên tia AB lấy điểm K sao cho . Chứng minh rằng:
1) MD = ME
2) Tứ giác MDEK nội tiếp. Từ đó suy ra điểm M là tâm của đường tròn bàng tiếp góc DAK của tam giác DAK.
Sở giáo dục và đào tạo HảI dương Đề thi chính thức Kỳ thi tuyển sinh lớp 10 THPT chuyên nguyễn trãi - Năm học 2009-2010 Môn thi : toán Thời gian làm bài: 150 phút Ngày thi 08 tháng 7 năm 2009 (Đề thi gồm: 01 trang) Câu I (2.5 điểm): 1) Giải hệ phương trình: 2) Tìm m nguyên để phương trình sau có ít nhất một nghiệm nguyên: Câu II (2.5 điểm): 1) Rút gọn biểu thức: với 2) Cho trước số hữu tỉ m sao cho là số vô tỉ. Tìm các số hữu tỉ a, b, c để: Câu III (2.0 điểm): 1) Cho đa thức bậc ba f(x) với hệ số của x3 là một số nguyên dương và biết . Chứng minh rằng: là hợp số. Tìm giá trị lớn nhất của biểu thức: Câu IV (2.0 điểm): Cho tam giác MNP có ba góc nhọn và các điểm A, B, C lần lượt là hình chiếu vuông góc của M, N, P trên NP, MP, MN. Trên các đoạn thẳng AC, AB lần lượt lấy D, E sao cho DE song song với NP. Trên tia AB lấy điểm K sao cho . Chứng minh rằng: MD = ME 2) Tứ giác MDEK nội tiếp. Từ đó suy ra điểm M là tâm của đường tròn bàng tiếp góc DAK của tam giác DAK. Câu V (1.0 điểm): Trên đường tròn (O) lấy hai điểm cố định A và C phân biệt. Tìm vị trí của các điểm B và D thuộc đường tròn đó để chu vi tứ giác ABCD có giá trị lớn nhất. -----------------------Hết----------------------- Họ và tên thí sinh : ......................................................Số báo danh :....................... Chữ kí của giám thị 1 : .............................Chữ kí của giám thị 2:............................
File đính kèm:
- de_thi_tuyen_sinh_mon_toan_lop_10_thpt_chuyen_nguyen_trai_na.doc