Đề thi tuyển sinh môn Toán Lớp 10 THPT chuyên Nguyễn Trãi - Năm học 2012-2013 - Sở Giáo dục & Đào tạo Hải Dương (Có đáp án)

Câu V (3,0 điểm)

Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm C sao cho AC < BC (C A). Các tiếp tuyến tại B và C của (O) cắt nhau ở điểm D, AD cắt (O) tại E (E A) .

1) Chứng minh BE2 = AE.DE.

2) Qua C kẻ đường thẳng song song với BD cắt AB tại H, DO cắt BC tại F. Chứng minh tứ giác CHOF nội tiếp .

1) Gọi I là giao điểm của AD và CH. Chứng minh I là trung điểm của CH.

 

doc4 trang | Chia sẻ: Đạt Toàn | Ngày: 09/05/2023 | Lượt xem: 207 | Lượt tải: 0download
Bạn đang xem nội dung Đề thi tuyển sinh môn Toán Lớp 10 THPT chuyên Nguyễn Trãi - Năm học 2012-2013 - Sở Giáo dục & Đào tạo Hải Dương (Có đáp án), để tải tài liệu về máy bạn hãy click vào nút TẢI VỀ
SỞ GIÁO DỤC VÀ ĐÀO TẠO
HẢI DƯƠNG
ĐỀ CHÍNH THỨC
KÌ THI TUYỂN SINH LỚP 10 THPT CHUYÊN
NGUYỄN TRÃI NĂM HỌC 2012- 2013
Môn thi: TOÁN (không chuyên)
Thời gian làm bài: 120 phút
Đề thi gồm : 01 trang
Câu I (2,0 điểm)
1) Giải phương trình .
Giải hệ phương trình .
Câu II ( 1,0 điểm)
 Rút gọn biểu thức với .
Câu III (1,0 điểm)
Một tam giác vuông có chu vi là 30 cm, độ dài hai cạnh góc vuông hơn kém nhau 7cm. Tính độ dài các cạnh của tam giác vuông đó.
Câu IV (2,0 điểm) 
Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): và parabol (P): .
Tìm m để đường thẳng (d) đi qua điểm A(-1; 3).
Tìm m để (d) cắt (P) tại hai điểm phân biệt có tọa độ (x1; y1) và (x2; y2) sao cho . 
Câu V (3,0 điểm) 
Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm C sao cho AC < BC (CA). Các tiếp tuyến tại B và C của (O) cắt nhau ở điểm D, AD cắt (O) tại E (E A) .
1) Chứng minh BE2 = AE.DE.
2) Qua C kẻ đường thẳng song song với BD cắt AB tại H, DO cắt BC tại F. Chứng minh tứ giác CHOF nội tiếp .
Gọi I là giao điểm của AD và CH. Chứng minh I là trung điểm của CH.
Câu VI ( 1,0 điểm) 
Cho 2 số dương a, b thỏa mãn . Tìm giá trị lớn nhất của biểu thức
 .
----------------------------Hết----------------------------
Họ và tên thí sinh. Số báo danh...
Chữ kí của giám thị 1: . Chữ kí của giám thị 2: 
SỞ GIÁO DỤC VÀ ĐÀO TẠO
HẢI DƯƠNG
KÌ THI TUYỂN SINH LỚP 10 THPT CHUYÊN NGUYỄN TRÃI NĂM HỌC 2012 - 2013
HƯỚNG DẪN VÀ BIỂU ĐIỂM CHẤM MÔN TOÁN (không chuyên)
Hướng dẫn chấm gồm : 02 trang
I) HƯỚNG DẪN CHUNG.
Thí sinh làm bài theo cách riêng nhưng đáp ứng được yêu cầu cơ bản vẫn cho đủ điểm.
Việc chi tiết điểm số (nếu có) so với biểu điểm phải được thống nhất trong Hội đồng chấm.
Sau khi cộng điểm toàn bài, điểm lẻ đến 0,25 điểm.
II) ĐÁP ÁN VÀ BIỂU ĐIỂM CHẤM.
Câu
Nội dung
Điểm
Câu I (2,0đ)
1) 1,0 điểm
0,25
0,25
0,25
.Vậy phương trình đã cho có một nghiệm x = -2
0,25
2) 1,0 điểm
 Từ (1)=>
0,25
x=3
0,25
Thay x=3 vào (2)=> 2y=2
0,25
y=1 . Vậy hệ phương trình đã cho có nghiệm (x;y)=(3;1) 
0,25
Câu II (1,0đ)
0,25
0,25
0,25
=-1
0,25
Câu III (1,0đ)
Gọi độ dài cạnh góc vuông nhỏ là x (cm) (điều kiện 0< x < 15)
=> độ dài cạnh góc vuông còn lại là (x + 7 )(cm)
Vì chu vi của tam giác là 30cm nên độ dài cạnh huyền là 30–(x + x +7)= 23–2x (cm)
0,25
Theo định lí Py –ta- go ta có phương trình 
0,25
 (1) Giải phương trình (1) được nghiệm x = 5; x = 48
0,25
Đối chiếu với điều kiện có x = 5 (TM đk); x = 48 (không TM đk)
Vậy độ dài một cạnh góc vuông là 5cm, độ dài cạnh góc vuông còn lại là 12 cm, độ dài cạnh huyền là 30 – (5 + 12) = 13cm
0,25
Câu IV (2,0đ)
1) 1,0 điểm
Vì (d) đi qua điểm A(-1; 3) nên thay x = -1 và y = 3 vào hàm số y = 2x – m + 1 ta có 2.(-1) – m +1 = 3 
0,25
-1 – m = 3 
0,25
 m = -4
0,25
Vậy m = -4 thì (d) đi qua điểm A(-1; 3)
0,25
2) 1,0 điểm
Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình
0,25
; Để (d) cắt (P) tại hai điểm phân biệt nên (1) có hai nghiệm phân biệt 
0,25
Vì (x1; y1) và (x2; y2) là tọa độ giao điểm của (d) và (P) nên x1; x2 là nghiệm của phương trình (1) và ,
Theo hệ thức Vi-et ta có .Thay y1,y2 vào có 
0,25
m=-1(thỏa mãn m<3) hoặc m=7(không thỏa mãn m<3)
Vậy m = -1 thỏa mãn đề bài
0,25
Câu V (3,0đ)
1) 1,0 điểm
Vẽ đúng hình theo yêu cầu chung của đề bài
0,25
VìBD là tiếp tuyến của (O) nên BD OB => vuông tại B
0,25
Vì AB là đường kính của (O) nên AE BE
0,25
Áp dụng hệ thức lượng trong (;BE AD) ta có BE2 = AE.DE
0,25
2) 1,0 điểm
Có DB= DC (t/c hai tiếp tuyến cắt nhau), OB = OC (bán kính của (O)) 
 => OD là đường trung trực của đoạn BC => (1)
0,25
Có CH // BD (gt), mà AB BD (vì BD là tiếp tuyến của (O))
0,25
=> CH AB => (2)
0,25
Từ (1) và (2) ta có => tứ giác CHOF nội tiếp 
0,25
3)1,0 điểm
Có CH //BD=> (hai góc ở vị trí so le trong) mà
 cân tại D => nên CB là tia phân giác của 
0,25
do CA CB => CA là tia phân giác góc ngoài đỉnh C của (3)
0,25
Trong có HI // BD => (4)
0,25
Từ (3) và (4) => mà I là trung điểm của CH
0,25
Câu VI
(1,0đ)
Với ta có: 
0,25
Tương tự có . Từ (1) và (2) 
0,25
Vì mà .
0,25
Khi a = b = 1 thì . Vậy giá trị lớn nhất của biểu thức là 
0,25

File đính kèm:

  • docde_thi_tuyen_sinh_mon_toan_lop_10_thpt_chuyen_nguyen_trai_na.doc
Bài giảng liên quan