Đề thi tuyển sinh vào Lớp 10 THPT (Chuyên Toán Tin) - Năm học 2009 -2010 - Sở Giáo dục và Đào tạo Hà Nội (Có đáp án)

Gọi đường tròn ngoại tiếp ABC là (I), I nằm trong ABC

Nếu A, B, C nằm trên (O) thì (I) và (O) trùng nhau.

*Nếu (O) đựng (I) hoặc (O) và(I) tiếp xúc trong với nhau thì đường kính của (I)

nằm trong (O) suy ra chu vi của (I) nhỏ hơn chu vi của (O).

*Nếu (O) và (I) cắt nhau tại M, N. Vì ABC có ba góc nhọn nên số đo cung nhỏ

MN< 1800 . Suy ra cung lớn MN>1800, ắt tồn tại đường kính của (I) nằm trong

(O). Vậy chu vi của (I) nhỏ hơn chu vi của (O)

pdf3 trang | Chia sẻ: Đạt Toàn | Ngày: 27/04/2023 | Lượt xem: 255 | Lượt tải: 0download
Bạn đang xem nội dung Đề thi tuyển sinh vào Lớp 10 THPT (Chuyên Toán Tin) - Năm học 2009 -2010 - Sở Giáo dục và Đào tạo Hà Nội (Có đáp án), để tải tài liệu về máy bạn hãy click vào nút TẢI VỀ
SỞ GIÁO DỤC VÀ ĐÀO TẠO 
 HÀ NỘI 
ĐỀ TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN 
NĂM HỌC 2009-2010 
ĐỀ CHÍNH THỨC Môn thi: TOÁN 
 Ngày thi: 25/6/2009 
 Thời gian làm bài 150 phút 
 (Dùng cho thí sinh thi vào lớp chuyên Toán và chuyên Tin) 
Bài I (3 điểm) 
1) Tìm các số nguyên dương n để A=
(n-8)
2
-48
n+5
 có giá trị là số nguyên dương. 
2) Tìm các số nguyên dương x, y thỏa mãn đẳng thứcx2+y(y2+y-3x)=0 
Bài II (2 điểm) 
Giải hệ phương trình (x, y, z là ẩn) 
Bài III. (3 điểm) 
 Cho ABC có ba góc nhọn nội tiếp (O). Gọi BD và CE là hai đường cao của 
tam giác ABC. 
 1/ Chứng minh AD.AC=AE.AB 
 2/ Tia AO cắt BC tại A1và cắt cung nhỏ BC tại A2. Tia BO cắt AC tại B1và 
cắt cung nhỏ AC tại B2. Tia CO cắt BA tại C1và cắt cung nhỏ AB tại C2. 
 Chứng minh: 
A1A2
AA1
 +
B1B2
BB1
 +
C1C2
CC1
 =1 
 3/ Từ A vẽ tia Ax vuông góc với DE. Cho cạnh BC cố định , đỉnh A di động 
trên cung lớn BC sao cho ABC có ba góc nhọn. Chứng minh tia Ax luôn đi qua 
một điểm cố định. 
Bài IV. (1 điểm) 
Cho đa thức P(x)= x4+ax3+bx2+cx+d (a, b, c, d là các hằng số). Biết rằng P(1)=10, 
P(2)=20, P(3)=30. Tính giá trị của biểu thức 
P(12)+P(-8)
10
+25 
Bài V (1 điểm) 
Chứng minh rằng: Nếu ba điểm A, B, C không có điểm nào nằm bên ngoài đường 
tròn (O) sao cho ABC có ba góc nhọn thì chu vi của đường tròn ngoại tiệp ABC 
không lớn hơn chu vi (O) 
. Hết.. 
Họ và tên thí sinh : . Số báo danh: .. 
Chữ kí giám thị số 1. Chữ kí giám thị số 2.. 
SỞ GIÁO DỤC VÀ ĐÀO TẠO 
 HÀ NỘI 
HƯỚNG DẪN CHẤM TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN 
NĂM HỌC 2009-2010 
ĐỀ CHÍNH THỨC Môn thi: TOÁN 
BÀI Ý HƯỚNG DẪN CHẤM ĐIỂM 
I 
 3.0 
1 Tìm số nguyên dương n  (1.5 điểm) 
*(n-8)
2
 -48 = n
2
 -16n+16 nên A=n-21+
121
n+5
 0.50 
*121=11
2
 và n+5≥6 ; n+5Z 0.25 
*n+5=11 được n=6 và A=-4 0.25 
*n+5=121 được n=116 và A=96 0.25 
*KL n=116 0.25 
2 Tìm các số nguyên dương x, y  (1.5 điểm) 
 *x
2
+y(y
2
+ y-3x)=0 x2-3xy+y2+y3=0 (1) 0.25 
*Coi (1) là pt bậc 2 với ẩn x 0.25 
*có =y2(5-4y) 0.25 
*Nếu y≥2 thì <0 phương trình (1) vô nghiệm 0.25 
*Với y=1 phương trình (1) trở thành x2-3x+2=0 x1=1; x2=2 0.25 
*KL: x=1, y=1 và x=2, t=1 0.25 
II 
 Giải hệ phương trình 2.0 
 *Nếu một trong 3 số x, y, z bằng 0 thì hai số còn lại bằng 0 
Ta thấy x=y=z=0 là một nghiệm của hệ 
0.25 
*Xét trường hợp cả ba số x, y, z khác 0 
hệ đã cho   
0.75 
*Cộng vế với vế của 3 PT ta được 
=0 
0.25 
(
1
x
 -1)
2 
+(
1
y
 -1)
2 +
(
1
z
 -1)
2 
 =0  (thỏa mãn hệ đã cho) 0.50 
*KL:Hệ đã cho có 2 nghiệm x=y=z=0 và x=y=z=1 .025 
III 
 3.0 
1 Chứng minhAD.AC=AE.AB(1 điểm) 
 A1
A2Q
J
E
H
D
R
L
O
CB
A
Chứng minh được tam giác ABD 
đồng dang với tam giác ACE 
0.50 
Chứng minh được 
AD.AC=AE.AB 
0.50 
2 Chứng minh  (1 điểm) 
 *Gọi H là trực tâm của ABC 
tia AH cắt BC tại J và cắt cung BC tại Q. CM được: 
A1A2
A1A2
 =
JQ
JA
0.25 
*CM được 
JH
JA
 =
JQ
JA
 =
SBHC
SBAC
*Tương tự chứng minh được
B1B2
B1B
 =
SAHC
SBAC
 ,
C1C2
C1C
 =
SAHB
SBAC
*ABC nhọn nên điểm H nằm trong tam giác. Suy ra 
SBHC+SBHA+SAHC=SBAC 
Từ đó 
A1A2
AA1
 +
B1B2
BB1
 +
C1C2
CC1
 =
SBHC+SBHA+SCHA
SABC
 =
SBAC
SABC
 =1 
3. Chứng minh tia Ax (1 điểm) 
 *tia BD cắt cungAC tại R, tia CE cắt cung AB tại L 
Chứng minh được DE//RL suy ra LRAx 
*cung AL=cungAR chứng minh Ax di qua tâm O khi A di động t 
IV 
 Tính giá trị của biểu thức (1 điểm) 
 *Đặt Q(x)=P(x)-10x 
*Có Q(1)=Q(2)=Q(3)=0 
*Q(x)=(x-1)(x-2)(x-3)(x-r) 
 P(x)=(x-1)(x-2)(x-3)(x-r)+10x 
*A=
P(12)+P(-8)
10
+25=2009 
V 
 Chứng minh rằng(1 điểm) 
 *Gọi đường tròn ngoại tiếp ABC là (I), I nằm trong ABC 
Nếu A, B, C nằm trên (O) thì (I) và (O) trùng nhau. 
*Nếu (O) đựng (I) hoặc (O) và(I) tiếp xúc trong với nhau thì đường kính của (I) 
nằm trong (O) suy ra chu vi của (I) nhỏ hơn chu vi của (O). 
*Nếu (O) và (I) cắt nhau tại M, N. Vì ABC có ba góc nhọn nên số đo cung nhỏ 
MN< 180
0
 . Suy ra cung lớn MN>1800, ắt tồn tại đường kính của (I) nằm trong 
(O). Vậy chu vi của (I) nhỏ hơn chu vi của (O) 
Thí sinh phải lập luận đấy đủ mới có điểm tối đa, điểm làm tròn đến 0.25 

File đính kèm:

  • pdfde_thi_tuyen_sinh_vao_lop_10_thpt_chuyen_toan_tin_nam_hoc_20.pdf