Đề thử sức đại học môn Toán - Đề tham khảo số 18
Câu VII.a (1 điểm): Có bao nhiêu số tự nhiên gồm 7 chữ số, biết rằng chữ số 2 có mặt đúng hai lần, chữ số 3 có mặt đúng ba lần và các chữ số còn lại có mặt không quá một lần?
Trần Sĩ Tùng TRƯỜNG THPT CHUYÊN – ĐHSP HÀ NỘI Đề số 18 ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 Môn thi: TOÁN Thời gian: 180 phút (không kể thời gian phát đề) I. PHẦN CHUNG (7 điểm) Câu I (2 điểm): Cho hàm số x y x 2 1 1 - = - . 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Lập phương trình tiếp tuyến của đồ thị (C) sao cho tiếp tuyến này cắt các trục Ox , Oy lần lượt tại các điểm A và B thỏa mãn OA = 4OB. Câu II (2 điểm): 1) Giải phương trình: x x x x x x sin cos 2 tan 2 cos2 0 sin cos + + + = - 2) Giải hệ phương trình: ïî ï í ì =-++++ =-++++ 011)1( 030)2()1( 22 3223 yyyxyx xyyyxyyx Câu III (1 điểm): Tính tích phân: I = ò + +1 0 1 1 dx x x Câu IV (1 điểm): Cho lăng trụ đứng ABC.A¢B¢C¢ có đáy ABC là tam giác vuông với AB = BC = a, cạnh bên AA¢ = a 2 . M là điểm trên AA¢ sao cho AM AA 1 ' 3 = uuur uuur . Tính thể tích của khối tứ diện MA¢BC¢. Câu V (1 điểm): Cho các số thực dương a, b, c thay đổi luôn thỏa mãn a b c 1+ + = . Chứng minh rằng: .2 222 ³ + + + + + + + + ba ac ac cb cb ba II. PHẦN TỰ CHỌN (3 điểm) 1. Theo chương trình chuẩn Câu VI.a (2 điểm): 1) Trong mặt phẳng với hệ toạ độ Oxy, cho điểm E(–1; 0) và đường tròn (C): x y x y2 2 – 8 – 4 –16 0+ = . Viết phương trình đường thẳng đi qua điểm E cắt (C) theo dây cung MN có độ dài ngắn nhất. 2) Trong không gian với hệ toạ độ Oxyz, cho 2 điểm A(0; 0; 4), B(2; 0; 0) và mặt phẳng (P): x y z2 5 0+ - + = . Lập phương trình mặt cầu (S) đi qua O, A, B và có khoảng cách từ tâm I của mặt cầu đến mặt phẳng (P) bằng 5 6 . Câu VII.a (1 điểm): Có bao nhiêu số tự nhiên gồm 7 chữ số, biết rằng chữ số 2 có mặt đúng hai lần, chữ số 3 có mặt đúng ba lần và các chữ số còn lại có mặt không quá một lần? 2. Theo chương trình nâng cao Câu VI.b (2 điểm): 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC cân tại A, biết phương trình đường thẳng AB, BC lần lượt là: x y2 – 5 0+ = và x y3 – 7 0+ = . Viết phương trình đường thẳng AC, biết rằng AC đi qua điểm F(1; 3)- . 2) Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1; 5; 0), B(3; 3; 6) và đường thẳng D: x y z1 1 2 1 2 + - = = - . Tìm toạ độ điểm M trên D sao cho DMAB có diện tích nhỏ nhất. Câu VII.b (1 điểm): Tìm tất cả các giá trị của tham số a để phương trình sau có nghiệm duy nhất: x a x5 5log (25 – log ) = ============================ TRƯỜNG THCS & THPT NGUYỄN KHUYẾN ĐỀ THỬ SỨC ĐẠI HỌC 2010 LỚP 12D1 Môn thi: Toán Thời gian làm bà 180 phút (không kể thời gian phát đề) ĐỀ SỐ 018
File đính kèm:
- De-thamkhao-18.pdf
- DapanToan-018.pdf