Đề thử sức đại học môn Toán - Đề tham khảo số 19
Câu IV (1 điểm): Cho tam giác vuông cân ABC có cạnh huyền AB = 2a. Trên đường thẳng d đi qua A và vuông góc mặt phẳng (ABC) lấy điểm S sao cho mp(SBC) tạo với mp(ABC) một góc bằng 600. Tính diện tích mặt cầu ngoại tiếp tứ diện SABC
Trần Sĩ Tùng TRƯỜNG THPT CHUYÊN – ĐHSP HÀ NỘI Đề số 19 ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 Môn thi: TOÁN Thời gian: 180 phút (không kể thời gian phát đề) I. PHẦN CHUNG (7 điểm) Câu I (2 điểm): Cho hàm số y x m x4 2 22 1= + + (1). 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 1. 2) Chứng minh rằng đường thẳng y x 1= + luôn cắt đồ thị hàm số (1) tại hai điểm phân biệt với mọi giá trị của m. Câu II (2 điểm): 1) Giải phương trình: x x x2 22sin 2sin tan 4 pæ ö - = -ç ÷ è ø 2) Giải hệ phương trình: ( )x x x2 2 23 3 32 log – 4 3 log ( 2) log ( – 2) 4+ + - = Câu III (1 điểm): Tính tích phân: I = x dx x x 3 20 sin cos 3 sin p + ò Câu IV (1 điểm): Cho tam giác vuông cân ABC có cạnh huyền AB = 2a. Trên đường thẳng d đi qua A và vuông góc mặt phẳng (ABC) lấy điểm S sao cho mp(SBC) tạo với mp(ABC) một góc bằng 600. Tính diện tích mặt cầu ngoại tiếp tứ diện SABC. Câu V (1 điểm): Tìm giá trị nhỏ nhất của hàm số: x x x x f x x x 4 3 2 2 4 8 8 5( ) 2 2 - + - + = - + II. PHẦN TỰ CHỌN (3 điểm) 1. Theo chương trình chuẩn Câu VI.a (2 điểm): 1) Trong mặt phẳng với hệ toạ độ Oxy, cho elíp (E) có tiêu điểm thứ nhất là ( )3;0- và đi qua điểm M 4 331; 5 æ ö ç ÷ è ø . Hãy xác định tọa độ các đỉnh của (E). 2) Trong không gian với hệ toạ độ Oxyz, cho điểm A(0; 1; 3) và đường thẳng d: x t y t z 1 2 2 3 ì = - ï = +í ï =î . Hãy tìm trên đường thẳng d các điểm B và C sao cho tam giác ABC đều. Câu VII.a (1 điểm): Chứng minh: n nn n n nC C C n C n n 2 1 2 2 2 3 2 2 21 2 3 ... ( ).2 -+ + + + = + , trong đó n là số tự nhiên, n ≥ 1 và k nC là số tổ hợp chập k của n. 2. Theo chương trình nâng cao Câu VI.b (2 điểm): 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có A(2; 7) và đường thẳng AB cắt trục Oy tại E sao cho AE EB2= uuur uuur . Biết rằng tam giác AEC cân tại A và có trọng tâm là G 132; 3 æ ö ç ÷ è ø . Viết phương trình cạnh BC. 2) Trong không gian với hệ toạ độ Oxyz, cho đường thẳng d: x y z1 1 3 1 1 - += = và mặt phẳng (P): x y z2 2 2 0+ - + = . Lập phương trình mặt cầu (S) có tâm nằm trên đường thẳng d có bán kính nhỏ nhất tiếp xúc với (P) và đi qua điểm A(1; –1; 1). Câu VII.b (1 điểm): Giải hệ phương trình: x y y x y x 3 3 2 2 4 16 1 5(1 ) ìï + = + í + = +ïî . ============================ TRƯỜNG THCS & THPT NGUYỄN KHUYẾN ĐỀ THỬ SỨC ĐẠI HỌC 2010 LỚP 12D1 Môn thi: Toán Thời gian làm bài: 180 phút (không kể thời gian phát đề) ĐỀ SỐ 019
File đính kèm:
- De-thamkhao-19.pdf
- DapanToan-019.pdf