Giáo án Giải tích 12 - THPT Phạm Hồng Thái
Tiết 33: §5 BẤT PHƯƠNG TRÌNH MŨ và BẤT PHƯƠNG TRÌNH
LOGARIT
I/ Mục tiêu:
1/ Về kiến thức: Nắm được cách giải các bpt mũ, bpt logarit dạng cơ bản, đơn giản.Qua đógiải được các bpt mũ,bpt logarit cơ bản , đơn giản
2/Về kỉ năng: Vận dụng thành thạo tính đơn điệu của hàm số mũ ,logarit dể giải các bptmũ, bpt loga rit cơ bản, đơn giản
3/ Về tư duy và thái độ:- kỉ năng lô gic , biết tư duy mỡ rộng bài toán
- học nghiêm túc, hoạt động tích cực
II/ Chuân bị của giáo viên và học sinh:
+Giáo viên: bảng phụ, phiếu học tập
+Học sinh: kiến thức về tính đơn điệu hàm số mũ, logarit và bài đọc trước
III/Phương pháp: Gợi mỡ vấn đáp-hoạt động nhóm
a) y= y’= b)y= y’= *HĐ3 ;khảo sát sự biến thiên và vẽ đồ thị của hàm số - Nêu các bước khảo sát sự biến thiên và vẽ đồ thị của hàm số ? - Gọi 2 học sinh làm bài tập (3/61) GViên nhận xét bổ sung -Học sinh trả lời H3,H4 giải - Lớp theo dõi bổ sung HS theo dõi nhận xét 3/ Khảo sát sự biến thiên và vẽ đồ thị hàm số: a) y= . TXĐ :D=(0; +) . Sự biến thiên : . y’=>0 trên khoảng (0; +) nên h/s đồng biến . Giới hạn : . BBT x 0 + y’ + y + 0 Đồ thị : b) y = x-3 * TXĐ :D=R\ { 0} *Sự biến thiên : - y’ = - y’<0 trên TXĐ nên h/s nghịch biến trên từng khoảng xác định (- ;0), (0 ; + ) *Giới hạn : Đồ thị có tiệm cận ngang là trục hoành , tiệm cận đứng là trục tung BBT x - 0 + y' - - y 0 + - 0 Đồ thị : Hàm số đã cho là hàm số lẻ nên đồ thị đối xứng qua gốc toạ độ 4/ Củng cố : - Phát phiếu học tập để kiếm tra lại mức độ hiểu bài của h/s. 5/ Dặn dò : . Học bài . Làm các bài tập còn lại Sgk Ngµy 8 th¸ng 11 n¨m 2008 TiÕt 24,26 §3 LÔGARIT I) Mục tiêu: 1) Về kiến thức : - Biết khái niệm lôgarit cơ số a (a > 0, a1) của một số dương - Biết các tính chất của logarit (so sánh hai lôgarit cùng cơ số, qui tắc tính lôgarit, đổi cơ số lôgarit) - Biết các khái niệm lôgarit thập phân, số e và lôgarit tự nhiên 2) Về kỹ năng: - Biết vận dụng định nghĩa để tính một số biểu thức chứa lôgarit đơn giản - Biết vận dụng các tính chất của lôgarit vào các bài tập biến đổi, tính toán các biểu thức chứa lôgarit 3) Về tư duy và thái độ: - Tích cực tham gia vào bài học có tinh thần hợp tác - Biết qui lạ về quen. Rèn luyện tư duy lôgic II) Chuẩn bị của GV và HS GV: Giáo án, phiếu học tập HS: SGK, giải các bài tập về nhà và đọc qua nội dung bài mới ở nhà III) Phương pháp : Gợi mở, vấn đáp, hoạt động nhóm IV) Tiến trìnnh bài học: Ổn định: Kiểm tra bài cũ : Câuhỏi1: Phát biểu khái niệm hàm số lũy thừa Câuhỏi2: Phát biểu và viết lại biểu thức biểu diễn định lý về cách tính đạo hàm của hàm số lũy thừa, hàm số chứa căn thức bậc n Bài mới: Tiết 1: Họat động 1: Khái niệm về lôgarit 1) Định nghĩa Hoạt động của GV Hoạt động của HS Ghi Bảng GV định hướng HS nghiên cứu định nghĩa lôgarit bằng việc đưa ra bài toán cụ thể Tìm x biết : 2x = 8 2x = 3 Dẫn dắt HS đến định nghĩa SGK, GV lưu ý HS: Trong biểu thức cơ số a và biểu thức lấy logarit b phải thõa mãn : Tính các biểu thức: = ?, = ? = ?, = ? (a > 0, b > 0, a 1) GV phát phiếu học tập số 1 và hướng dẫn HS tính giá trị biểu thức ở phiếu này - Đưa về lũy thừa cơ số 2 rồi áp dụng công thức = để tính A Áp dụng công thức về phép tính lũy thừa cơ số 2 HS tiến hành nghiên cứu nội dung ở SGK - HS trả lời a) x = 3 b) x = ? chú ý GV hướng dẫn HS tiếp thu ghi nhớ - HS tiến hành giải dưới sự hướng dẫn của GV - Hai HS trình bày - HS khác nhận xét I) Khái niệm lôgarit: 1) Định nghĩa: Cho 2 số dương a, b với a 1. Số thỏa mãn đẳng thức được gọi là lôgarit cơ số a của b và kí hiệu là 2. Tính chất: Với a > 0, b > 0, a 1 Ta có tính chất sau: = 0, = 1 = b, = *) Đáp án phiếu học tập số 1 A = = = = = B = = = = và 81 rồi áp dụng công thức = b để tính B Sau khi HS trình bày nhận xét, GV chốt lại kết quả cuối cùng Cho số thực b, giá trị thu được khi nâng nó lên lũy thừa cơ số a rồi lấy lôgarit cơ số a? Cho số thực b dương giá trị thu được khi lấy lôgarit cơ số a rồi nâng nó lên lũy thừa cơ số a ? Yêu cầu HS xem vd2 sgk GV phát phiếu học tập số 2 và hướng dẫn HS giải bài tập trong phiếu học tập số 2 - So sánh và 1 - So sánh và 1. Từ đó so sánh và HS rút ra kết luận. Phép lấy lôgarit là phép ngược của phép nâng lên lũy thừa HS thực hiện yêu cầu của GV HS tiến hành giải dưới sự hướng dẫn của GV 1 HS trình bày HS khác nhận xét = = = 1024 Lấy lôgarit cơ số a Chú ý Nâng lên lũy thừa cơ số a Lấy lôgarit cơ số a b Nâng lên lũy thừa cơ số a b *) Đáp án phiếu học tập số 2 Vì và nên Vì 3 > 1 và 4 > 3 nên Họat động 2: Qui tắc tính lôgarit 1) Lôgarit của 1 tích Hoạt động của GV Hoạt động của HS Ghi Bảng GV nêu nội dung của định lý 1 và yêu cầu HS chứng minh định lý 1 GV định hướng HS chứng minh các biểu thức biểu diễn các qui tắc tính logarit của 1 tích. Yêu cầu HS xem vd3 SGK trang63. Chú ý : định lý mở rộng HS thực hiện dưới sự hướng dẫn của GV : Đặt = m, = n Khi đó + = m + n và = = = = m + n II. Qui tắc tính lôgarit 1. Lôgarit của một tích Định lý 1: Cho 3 số dương a, b1, b2 với a1, ta có : = + Chú ý: (SGK) 2) Lôgarit của một thương: Hoạt động của GV Hoạt động của HS Ghi Bảng GV nêu nội dung định lý 2 và yêu cầu HS chứng minh tương tự định lý 1 Yêu cầu HS xem vd 4 SGK trang 64 HS tiếp thu định lý 2 và thực hiện dưới sự hướng dẫn của GV HS thực hiện theo yêu cầu của GV 2. Lôgarit của một thương Định lý2: Cho 3 số dương a, b1, b2 với a1, ta có : = - TiÕt 2 Lôgarit của một lũy thừa: Hoạt động của GV Hoạt động của HS Ghi Bảng -GV nêu nội dung định lý3 và yêu cầu HS chứng minh định lý 3 - HS tiếp thu định lý và thực hiện yêu cầu của GV 3. Lôgarit của một lũy thừa Định lý 3: Cho 2 số dương a, b với a 1. Với mọi số , ta có Yêu cầu HS xem vd5 SGK trang 65 GV phát phiếu học tập số 3 và hướng dẫn HS làm bài tập ở phiếu học tập số 3 Áp dụng công thức: =+ Để tìm A . Áp dụng công thức = và =+ để tìm B HS thực hiện theo yêu cầu của GV -2 HS làm 2 biểu A, B trên bảng - HS khác nhận xét Đặc biệt: *) Đáp án phiếu học tập số 3 A = = = B = = = = Họat động 3: Đổi cơ số của lôgarit Hoạt động của GV Hoạt động của HS Ghi Bảng GV nêu nội dung của định lý 4 và hướng dẫn HS chứng minh HS tiếp thu, ghi nhớ III. Đổi cơ số Định lý 4: Cho 3 số dương a, b, c với ta có GV phát phiếu học tập số 4 và hướng dẫn HS giải bài tập ở phiếu học tập số 4 Áp dụng công thức để chuyển lôgarit cơ số 4 về lôgarit cơ số 2 . Áp dụng công thức =+ tính theo Áp dụng : GV hướng dẫn HS nghiên cứu các vd 6,7,8,9 SGK trang 66-67 HS tiến hành làm phiếu học tập số 4 dưới sự hướng dẫn của GV Đại diện 1 HS trình bày trên bảng HS khác nhận xét - HS thực hiện theo yêu cầu của GV Đặc biệt: (b) *) Đáp án phiếu học tập số 4 = = = = Hoạt động 4: Lôgarit thập phân – Lôgarit tự nhiên Hoạt động của GV Hoạt động của HS Ghi Bảng GV nêu định nghĩa lôgarit thập phân và lôgarit tự nhiên cơ số của lôgarit thập phân và lôgarit tự nhiên lớn hơn hay bé hơn 1 ? Nó có những tính chất nào ? GV phát phiếu học tập số 5 và hướng dẫn HS làm bài tập ở phiếu học tập số 5 Viết 2 dưới dạng lôgarit thập phân của một số rồi áp dụng công thức =- để tính A Viết 1 dưới dạng lôgarit thập phân của 1 số rồi áp dụng công thức HS tiếp thu , ghi nhớ Lôgarit thập phân là lôgarit cơ số 10 tức nó có cơ số lớn hơn 1 Lôgarit tự nhiên là lôgarit cơ số e tức nó có cơ số lớn hơn 1 Vì vậy logarit thập phân và lôgarit tự nhiên có đầy đủ tính chất của lôgarit với cơ số lớn hơn 1 IV. Lôgarit thập phân- Lôgarit tự nhiên Lôgarit thập phân: là lôgarit cơ số 10 được viết là logb hoặc lgb Lôgarit tự nhiên : là lôgarit cơ số e được viết là lnb *) Đáp án phiếu học tập số 5 A = 2 – lg3 = 2lg10 – lg3 = lg102 – lg3 = lg100 – lg3 = lg =+ và = - để tính B So sánh HS thực hiện theo yêu cầu của GV Đại diện 1 HS trình bày trên bảng HS khác nhận xét B = 1 + lg8 - lg2 = lg10 + lg8 - lg2 = lg = lg40 Vì 40 > nên B > A 4) Củng cố toàn bài - GV tóm tắt lại các vấn đề trọng tâm của bài học : 1. Định nghĩa, các công thức biểu diễn tính chất của lôgarit và các hệ quả suy ra từ các tính chất đó 2. Các biểu thức biểu diễn qui tắc tính lôgarit( lôgarit của một tích, lôgarit của một thương và lôgarit của một lũy thừa) 3. Các biểu thức đổi cơ số của lôgarit. Định nghĩa lôgarit thập phân và lôgarit tự nhiên 4. Hướng dẫn học bài và làm bài tập ở nhà SGK trang 68 TiÕt 27 BÀI TẬP LÔGARIT I) Mục tiêu: 1) Về kiến thức : - Giúp HS hệ thống lại kiến thức đã học về lôgarit trên cơ sở đó áp dụng vào giải các bài tậpcụ thể - Rèn luyện kĩ năng vận dụng lí thuyết vào việc giải bài tập cho HS 2) Về kỹ năng: - Áp dụng được các công thức vào từng dạng bài tập cụ thể - Rèn luyện kĩ năng trao đổi thảo luận thông qua phiếu học tập II) Chuẩn bị của GV và HS GV: Giáo án, phiếu học tập HS: Học bài cũ và làm bài tập SGK III) Phương pháp : - Gợi mở, vấn đáp - Trao đổi thảo luận thông qua phiếu học tập - Phương pháp phân tích tổng hợp thông qua các bài tập phức tạp IV) Tiến trìnnh bài học: Ổn định: Kiểm tra bài cũ : Tính giá trị biểu thức: A = ; B = Bài mới: Họat động 1: Giúp học sinh nắm lại công thức về Lôgarit Hoạt động của GV Hoạt động của HS Ghi Bảng GV yêu cầu HS nhắc lại các công thức lôgarit HS tính giá trị A, B HS - - - - - A = = B = = Hoạt động 2: Vận dụng công thức rèn luyện kĩ năng giải bài tập cơ bản cho HS Hoạt động của GV Hoạt động của HS Ghi Bảng GV cho HS nhận dạng công thức và yêu cầu HS đưa ra cách giải GV nhận xét và sửa chữa GV cho HS làm phiếu học tập số 1 HS áp dụng công thức và trình bày lên bảng HS trao đổi thảo luận nêu kết quả 1) A = 2) x = 512 3) x = Bài1 a) b) c) d) Bài 2 a) b) c) d) Hoạt động 3: Rèn luyện khả năng tư duy của HS qua các bài tập nâng cao Hoạt động của GV Hoạt động của HS Ghi Bảng GV cho HS nhắc lại tính chất của lũy thừa với số mũ thực GV gọi HS trình bày cách giải - a >1, - a < 1, HS trình bày lời giải a) Đặt = , = Ta có Vậy > b) < Bài 3(4/68SGK) So sánh a) và b) và GV gọi HS nhắc lại công thức đổi cơ số của lôgarit GV yêu cầu HS tính theo C từ đó suy ra kết quả GV cho HS trả lời phiếu học tập số 2 và nhận xét đánh giá HS HS áp dụng HS sinh trình bày lời giải lên bảng Bài4(5b/SGK) Cho C = . Tính theo C Tacó Mà C = == Vậy = 4) Củng cố : - Nhắc lại cách sử dụng công thức để tính giá trị biểu thức - So sánh hai lôgarit 5) Bài tập về nhà : a) Tính B = b) Cho = và = . Tính theo và Ngµy 15 th¸ng 11 n¨m 2008 TiÕt 28,29 §4 HÀM SỐ MŨ. HÀM SỐ LÔGARIT I. Mục tiêu: + Về kiến thức: - Biết khái niệm và tính chất của hàm mũ và hàm lôgarit. - Biết công thức tính đạo hàm các hàm số mũ và lôgarit và hàm số hợp của chúng. - Biết dạng đồ thị của hàm mũ và hàm lôgarit. + Về kỹ năng: - Biết vận dụng tính chất các hàm mũ, hàm lôgarit vào việc so sánh hai số, hai biểu thức chứa mũ, hàm số lôgarit. - Biết vẽ đồ thị các hàm số lũy thừa, hàm số mũ và hàm số lôgarit. - Tính được đạo hàm các hàm số y = ex, y = lnx. + Về tư duy và thái độ: - Rèn luyện tính khoa học, nghiêm túc. - Rèn luyện tính tư duy, sáng tạo. - Vận dụng được các kiến thức đã học vào giải các bài toán. II. Chuẩn bị của giáo viên và học sinh: + Giáo viên: Giáo án, bảng phụ, các phương tiện dạy học cần thiết. + Học sinh: SGK, giấy bút, phiếu trả lời. III. Phương pháp: Đặt vấn đề IV. Tiến trình bài học: 1. Ổn định tổ chức: 2. Kiểm tra bài cũ: Gọi 1 HS lên bảng ghi các công thức về lôgarit Đánh giá và cho điểm và chỉnh sửa 3. Bài mới: Hoạt động 1: Dẫn đến khái niệm hàm số Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Với x = 1, x = ½ .Tính giá trị của 2x . Cho học sinh nhận xét Với mỗi xR có duy nhất giá trị 2x Nêu vd3 và cho học sinh trả lời hoạt động 1 Cho học sinh thử định nghĩa và hoàn chỉnh định nghĩa Cho học sinh trả lời HĐ2 Tính Nhận xét Nêu công thức S = Aeni A = 80.902.200 n = 7 i = 0,0147 và kết quả Định nghĩa Trả lời I/HÀM SỐ MŨ: 1)ĐN: sgk VD: Các hàm số sau là hàm số mũ: + y = ( + y = + y = 4-x Hàm số y = x-4 không phải là hàm số mũ Hoạt động 2: Dẫn đến công thức tính đạo hàm số hàm số mũ. Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Cho học sinh nắm được Công thức: + Nêu định lý 1, cho học sinh sử dụng công thức trên để chứng minh. + Nêu cách tính đạo hàm của hàm hợp để tính (eu)' Với u = u(x). + Áp dụng để tính đạo hàm e3x , , + Nêu định lý 2 + Hướng dẫn HS chứng minh định lý 2 và nêu đạo hàm hàm hợp Cho HS vận dụng định lý 2 để tính đạo hàm các hàm số y = 2x , y = + Ghi nhớ công thức + Lập tỉ số rút gọn và tính giới hạn. HS trả lời HS nêu công thức và tính. Ghi công thức Ứng dụng công thức và tính đạo hàm kiểm tra lại kết quả theo sự chỉnh sửa giáo viên 2. Đạo hàm hàm số mũ. Ta có CT: Định lý 1: SGK Chú ý: (eu)' = u'.eu Hoạt động 3: Khảo sát hàm số y = ax (a>0;a ) Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Cho HS xem sách và lập bảng như SGK T73 Cho HS ứng dụng khảo sát và vẽ độ thị hàm số y = 2x GV nhận xét và chỉnh sửa. Cho HS lập bảng tóm tắt tính chất của hàm số mũ như SGK. HS lập bảng HS lên bảng trình bày bài khảo sát và vẽ đồ thị hàm số y = 2x Bảng khảo sát SGK/73 y 1 0 x Hoạt động 4: Dẫn đến khái niệm hàm số lôgarit Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Với x = 1, x = ½ .Tính giá trị của . Cho học sinh nhận xét Với mỗi x>0 có duy nhất giá trị y = Nêu vd3 và cho học sinh trả lời hoạt động 1 Cho học sinh thử nêu định nghĩa và hoàn chỉnh định nghĩa Cho học sinh trả lời HĐ2 Cho ví dụ:Tìm tập xác định các hàm số a) y = b) y = Cho học sinh giải và chỉnh sửa Tính Nhận xét Định nghĩa Trả lời Nhận biết được y có nghĩa khi: a) x - 1 > 0 b) x2 - x > 0 và giải được I/HÀM SỐ LÔGARIT 1)ĐN: sgk VD1: Các hàm số sau là hàm số lôgarit: + y = + y = + y = VD2:Tìm tập xác định các hàm số a) y = b) y = Hoạt động 5: Dẫn đến công thức tính đạo hàm số hàm số lôgarit. Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng + Nêu định lý 3, và các công thức (sgk) + Nêu cách tính đạo hàm của hàm hợp của hàm lôgarit + Nêu ví dụ: Tính đạo hàm các hàm số: a- y = b- y = ln () Cho 2 HS lên bảng tính GV nhận xét và chỉnh sửa + Ghi định lý và các công thức HS trình bày đạo hàm hàm số trong ví dụ. Định lý 3: (SGK) + Đặc biệt + Chú ý: Hoạt động 6: Khảo sát hàm số Lôgarit y = (a>0,a) Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Cho HS lập bảng khảo sát như SGK T75 + Lập bảng tóm tắt tính chất hàm số lôgarit + Trên cùng hệ trục tọa độ cho HS vẽ đồ thị các hàm số : a- y = y = 2x b- y = y = GV chỉnh sửa và vẽ thêm đường thẳng y = x Và cho HS nhận xét GV dùng bảng phụ hoặc bảng đạo hàm các hàm số lũy thừa, mũ, lôgarit trong SGK cho học sinh ghi vào vở. Lập bảng Lập bảng HS1: lên bảng vẽ các đồ thị hàm số ở câu a HS2: lên bảng vẽ các đồ thị hàm số ở câu b Nhận xét Lập bảng tóm tắt + Bảng khảo sát SGK T75,76 +Bảng tính chất hàm số lôgarit SGK T76 Chú ý SGK Bảng tóm tắt SGK 4. Củng cố toàn bài: (5') - GV nhắc lại những kiến thức cơ bản của hàm số mũ và lôgarit - GV nhấn mạnh tính đồng biến nghịch biến của hàm số mũ và lôgarit tùy thuộc vào cơ số. - Nhắc lại các công thức tính đạo hàm của hàm số lũy thừa, mũ, lôgarit. - Làm các bài tập 1,2,3,4,5 trang 77,78 (SGK) TiÕt 30 BÀI TẬP HÀM SỐ MŨ. HÀM SỐ LÔGARIT I. Mục tiêu: + Về kiến thức: - Biết khái niệm và tính chất của hàm số mũ và hàm lôgarit. - Biết công thức tính đạo hàm của hàm số mũ và lôgarit. - Biết dạng của hàm số mũ và lôgarit. + Về kỹ năng: - Biết vận dụng tính chất các hàm mũ, hàm lôgarit vào việc so sánh hai số, hai biểu thức chứa mũ, hàm số lôgarit. - Biết vẽ đồ thị các hàm số lũy thừa, hàm số mũ và hàm số lôgarit. - Tính được đạo hàm các hàm số mũ và lôgarit + Về thái độ: - Cẩn thận , chính xác. II. Chuẩn bị của giáo viên và học sinh: + Giáo viên: Giáo án , bảng phụ + Học sinh: SGK, chuận bị bài tập, dụng cụ học tập. III. Phương pháp: Gợi mở, giải quyết vấn đề, thảo luận nhóm. IV. Tiến trình bài học: 1. Ổn định tổ chức: 2. Kiểm tra bài cũ: CH1: Trình bày các bước khảo sát và vẽ đồ thị hàm số : y = ax (a>1) Gọi HS1 Trả lời . GV: Đánh giá và cho điểm CH2: Tính đạo hàm các hàm số sau: a- y = b- y = c- y = Cho HS cả lớp giải, gọi 3 em cho kết quả từng bài. 3. Bài mới: Hoạt động 1: Vận dụng kiến thức khảo sát và vẽ đồ thị hàm số mũ: Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Ghi BT1/77 Cho HS nhận xét cơ số a của 2 hàm số mũ cần vẽ của bài tập 1 Gọi 1 HS lên bảng vẽ 1 bài a, còn bài b về nhà làm. Cho 1 HS ở dưới lớp nhận xét sau khi vẽ xong đồ thị Đánh giá và cho điểm Nhận xét a- a=4>1: Hàm số đồng biến. b- a= ¼ <1 : Hàm số nghịch biến Lên bảng trình bày đồ thị Nhận xét Y 4 1 0 1 X BT 1/77: Vẽ đồ thị hs a- y = 4x b- y = Giải a- y = 4x + TXĐ R + SBT y' = 4xln4>0, 4x=0, 4x=+ + Tiệm cận : Trục ox là TCN + BBT: x - 0 1 + y' + + + y 1 4 + 0 + Đồ thị: Y Hoạt động 2:Vận dụng công thức tính đạo hàm của hàm số mũ và hàm số lôgarit. Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Cho 1 HS nhắc lại các công thức tính đạo hàm của hàm số mũ và hàm số lôgarit cso liên quan đến bài tập. Gọi 2 HS lên bảng giải 2 bài tập 2a/77 và 5b/78 (SGK) Chọn 1 HS nhận xét GV đánh giá và cho điểm Ghi công thức (ex)' = ex; (eu)' = u'.eu 2 HS lên bảng giải HS nhận xét BT 2a/77: Tính đạo hàm của hàm số sau: y = 2x.ex+3sin2x BT 5b/78: Tính đạo hàm y = log(x2 +x+1) Giải: 2a) y = 2x.ex+3sin2x y' = (2x.ex)' + (3sin2x)' = 2(x.ex)' + 3(2x)'.cox2x = 2(ex+x.ex)+6cos2x) = 2(ex+xex+3cos2x) 5b) y = log(x2+x+1) y' = Hoạt động 3: Vận dụng tính chất của hàm số mũ và hàm số lôgarit để tìm TXĐ của hàm số đó. Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Nêu BT3/77 Gọi 1 HS lên bảng giải Cho 1 HS ở dưới lớp nhận xét GV kết luận cho điểm HS lên bảng trình bày HS nhận xét BT 3/77: Tìm TXĐ của hs: y = Giải: Hàm số có nghĩa khi x2-4x+3>0 óx3 Vậy D = R \[ 1;3] 4. Củng cố toàn bài: - GV nhắc lại những kiến thức cơ bản của hàm số mũ và lôgarit - GV nhấn mạnh tính đồng biến nghịch biến của hàm số mũ và lôgarit 5. Hướng dẫn học bài ở nhà và ra bài tập ở nhà: - Làm các bài tập còn lại trang 77,78 (SGK) và các bài tập sau: (HS xem trên bảng phụ) BT1: Tìm TXĐ của hàm số a- y = b- y = BT2: Sử dụng tính đồng biến nghịch biến của hàm số mũ và hàm lôgarit hãy so sánh các số sau với 1: a- b- y = ngµy 22 th¸ng 11 n¨m 2008 TiÕt 31,32 §5 PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LOGARIT I. Mục tiêu: + Về kiến thức: • Biết các dạng phương trình mũ và phương trình logarit co bản. • Biết phương pháp giải một số phương trình mũ và phương trình logarit đơn giản. + Về kỹ năng: • Biết vận dụng các tính chất của hàm số mũ, hàm số logarit vào giải các phương trình mũ và logarit cơ bản. • Biết cách vận dụng phương pháp đặt ẩn phụ, phương pháp vẽ đồ thị và các phương pháp khác vào giải phương trình mũ, phương trình logarrit đơn giản. II. Chuẩn bị của giáo viên và học sinh. + Giáo viên: - Phiếu học tập, bảng phụ. + Học sinh: - Nhớ các tính chất của hàm số mũ và hàm số logarit. - Làm các bài tập về nhà. III. Phương pháp: + Đàm thoại, giảng giải, các hoạt động. IV. Tiến trình bài học. 1) Ổn định tổ chức: - Ổn định lớp, kiểm tra sĩ số. 2) Kiểm tra bài cũ: 3) Bài mới: Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng * Hoạt động 1. + Giáo viên nêu bài toán mở đầu ( SGK). + Giáo viên gợi mỡ: Nếu P là số tiền gởi ban đầu, sau n năm số tiền là Pn, thì Pn được xác định bằng công thức nào? + GV kế luận: Việc giải các phương trình có chứa ẩn số ở số mũ của luỹ thừa, ta gọi là phương trình mũ. + GV cho học sinh nhận xet dưa ra dạng phương trình mũ. + Đọc kỹ đề, phân tích bài toán. + Học sinh theo dõi đưa ra ý kiến. • Pn = P(1 + 0,084)n • Pn = 2P Do đó: (1 + 0,084)n = 2 Vậy n = log1,084 2 ≈ 8,59 + n Î N, nên ta chon n = 9. + Học sinh nhận xet dưa ra dạng phương trình mũ I. Phương trình mũ. 1. Phương trình mũ cơ bản a. Định nghĩa : + Phương trình mũ cơ bản có dạng : ax = b, (a > 0, a ≠ 1) b. Nhận xét: + Với b > 0, ta có: ax = b x = logab + Với b < 0, phương trình ax = b vô nghiệm. * Hoạt động 2. + GV cho học sinh nhận xét nghiệm của phương trình ax = b, (a > 0, a ≠ 1) là hoành độ giao điểm của đồ thị hàm số nào? + Thông qua vẽ hìn
File đính kèm:
- GIAO AN GIAI TICH 12 (CT CHUAN).doc