Giáo án Giải tích 12 - Tiết 66 đến tiết 70

I. Mục tiêu:

 + Về kiến thức: Giúp học sinh :

- Hiểu cách xây dựng phép trừ số phức từ phép toán cộng.

- Hiểu cách xây dựng phép nhân số phức từ phép toán cộng và nhân các biểu thức dạng a + bi.

- Thấy được các tính chất của phép nhân số phức tương tự phép nhân số thực.

+ Về kĩ năng: Giúp học sinh thực hiện thành thạo phép trừ, nhân số phức.

+ Về tư duy và thái độ: tích cực hoạt động, có tinh thần hợp tác.

II. Chuẩn bị của giáo viên và học sinh:

 + Giáo viên: Giáo án, phiếu học tập.

 + Học sinh: Học bài cũ và làm bài tập ở nhà.

III. Phương pháp: Thuyết giảng, gợi mở, vấn đáp, hoạt động nhóm.

IV. Tiến trình bài dạy:

 1. Ổn định tổ chức: Ổn định lớp, điểm danh.

 2. Kiểm tra bài cũ:

 

doc11 trang | Chia sẻ: minhanh89 | Lượt xem: 776 | Lượt tải: 0download
Bạn đang xem nội dung Giáo án Giải tích 12 - Tiết 66 đến tiết 70, để tải tài liệu về máy bạn hãy click vào nút TẢI VỀ
Ngày soạn :15/ 02/ 2009
Số tiết : 66- 70.
GV: Nguyễn Đình Nhâmêguyeguyeenx DDinhf cụ dạy học .
CHƯƠNG IV	SỐ PHỨC
Tiết: 66
§1 SỐ PHỨC (Tiết 1)
I. Mục tiêu:
	+ Về kiến thức: Giúp học sinh :
Hiểu được nhu cầu mở rộng tập hợp số thực thành tập hợp số phức.
Hiểu cách xây dựng phép toán cộng số phức và thấy được các tính chất của phép toán cộng số phức tương tự các tính chất của phép toán cộng số thực.
+ Về kĩ năng: Giúp học sinh 
Biết cách biểu diễn số phức bởi điểm và bởi vectơ trên mặt phẳng phức.
Thực hiện thành thạo phép cộng số phức.
+ Về tư duy và thái độ: tích cực hoạt động, có tinh thần hợp tác.
II. Chuẩn bị của giáo viên và học sinh:
	+ Giáo viên: Giáo án, phiếu học tập.
	+ Học sinh: Các kiến thức đã học về các tập hợp số.
III. Phương pháp: Thuyết giảng, gợi mở, vấn đáp, hoạt động nhóm.
IV. Tiến trình bài dạy:
	1. Ổn định tổ chức: Ổn định lớp, điểm danh.
	2. Bài mới:
Hoạt động 1: Hình thành khái niệm số phức
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
HĐTP1: Mở rộng tập số phức từ tập số thực
H: Cho biết nghiệm của PT x2 – 2 = 0 trên tập Q? Trên tập R?
 GV: Như vậy một PT có thể vô nghiệm trên tập số này nhưng lại có nghiệm trên tập số khác.
H: Cho biết nghiệm của PT x2 + 1 = 0 trên tập R?
GV: Nếu ta đặt i2 = - 1 thì PT có nghiệm ?
GV: Như vậy PT lại có nghiệm trên một tập số mới, đó là tập số phức kí hiệu là C.
HĐTP2: Hình thành khái niệm về số phức
 H : Cho biết nghiệm của PT (x-1)2 + 4 = 0 trên R? Trên C?
GV: số 1 + 2i được gọi là 1 số phức => ĐN1: GV giới thiệu dạng z = a + bi trong đó a, b R, i2 = - 1, i: đơn vị ảo, a: phần thực, b: phần ảo.
H: Nhận xét về các trường hợp đặc biệt a = 0, b = 0?
H: Khi nào số phức a + bi =0? 
H: Xác định phần thực, phần ảo của các số phức sau z = 3 + i và z’ = - i?
H: Hai số phức z = a + bi và z’ = a’ + b’i bằng nhau khi nào ?
=> ĐN2
Đ: PT vô nghiệm trên Q, có 2 nghiệm x = , x = - trên R
Đ: PT vô nghiệm trên R.
Đ: PT x2 = - 1 = i2 có 2 nghiệm x = i à x = - i
Đ: PT vô nghiệm trên R, có 2 nghiệm x = 1 + 2i và x = 1 – 2i trên C.
Nhắc lại ĐN về số phức
Đ: b=0: z = a R C
a =0: z = bi
Đ: a = 0 và b = 0
HS trả lời
Đ: a = a’ và b = b’
1. Khái niệm số phức:
* ĐN1 : sgk
* Chú ý:
+ Số phức z = a + 0i = a R C: số thực
+ Số phức z = 0 + bi = bi: số ảo
+ Số 0 = 0 + 0i = 0i : vừa là số thực vừa là số ảo.
ĐN2: sgk
	Hoạt động 2: Biểu diễn hình học số phức
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
Ta đã biết biểu diễn số thực trên trục số ( trục Ox) tương tự ta cũng có thể biểu diễn số ảo trên trục Oy ^Ox. Mặt phẳng Oxy gọi là mặt phẳng phức. Một số phức z=a+bi được biểu diến hình học bởi điểm M(a,b) trên mặt phẳng Oxy
H: Biểu diến các số sau:
z=-2
z1=3i
z2=2-i
Nghe hiểu
HS: Biểu diến hình học
2. Biểu diễn hình học của số phức:
O
y
M(z)
a
b
Hoạt động 3: Tiếp cận định nghĩa và tính chất phép cộng số phức
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
H: z1=2-3i ; z2=-1+i
Tính z1+z2=?
H: Cho z=a+bi, z’=a’+b’i. Tính z+z’?
® định nghĩa 3
H: Nhắc lại các tính chất của số thực?
Gv: số phức cũng có các tính chất tương tự số thực
® nêu các tính chất
Đ: z1+z2=1-2i
Đ: z+z’=a+a’+(b+b’)i
Đ: Trả lời câu hỏi của GV
Nghe, ghi nhớ
3. Phép cộng và phép trừ số phức:
a. Phép cộng số phức:
ĐN3: (sgk)
b. Tính chất của phép cộng số phức: sgk
Hoạt động 4: Bài tập vận dụng
	Phiếu học tập: 
	Cho số phức z = 2-3i
Xác định phần thực, phần ảo
Biểu diến hình học số phức z
Xác định số đối của z và biểu diễn hình học trong mặt phẳng phức
4. Củng cố toàn bài: Nhắc lại các khái niệm số phức, biểu diễn hình học, phép cộng và các tính chất
5. Hướng dẫn học bài ở nhà và ra bài tập về nhà: làm BT 1, 2, 3 trang 189 SGK, học bài và xem bài mới
Tiết: 67
SỐ PHỨC (Tiết 2)
I. Mục tiêu:
	+ Về kiến thức: Giúp học sinh :
Hiểu cách xây dựng phép trừ số phức từ phép toán cộng.
Hiểu cách xây dựng phép nhân số phức từ phép toán cộng và nhân các biểu thức dạng a + bi.
Thấy được các tính chất của phép nhân số phức tương tự phép nhân số thực.
+ Về kĩ năng: Giúp học sinh thực hiện thành thạo phép trừ, nhân số phức.
+ Về tư duy và thái độ: tích cực hoạt động, có tinh thần hợp tác.
II. Chuẩn bị của giáo viên và học sinh:
	+ Giáo viên: Giáo án, phiếu học tập.
	+ Học sinh: Học bài cũ và làm bài tập ở nhà.
III. Phương pháp: Thuyết giảng, gợi mở, vấn đáp, hoạt động nhóm.
IV. Tiến trình bài dạy:
	1. Ổn định tổ chức: Ổn định lớp, điểm danh.
	2. Kiểm tra bài cũ:
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
H: Cho 2 số phức z = -2 + i, z’ = 1 – 3i
Tìm số đối của z’
Tính tổng z + (-z’)
GV: Nhận xét z + (-z’) = -2 + i + (-1) +3i = -2 + i - (1-3i) = z – z’
=> ĐN hiệu 2 số phức
Nghe, hiểu và thực hiện nhiệm vụ
Đ: - z’ = -1 + 3i
 z + (-z’) = -2 + i + (-1) +3i = - 3 + 4i
HS trình bày lời giải
 3. Bài mới:
Hoạt động 1:
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
GV đưa ra quy tắc tính hiệu 2 số phức
H: z = 2 - 3i, z’ = - 3 – i
Tính z -z’
Đ: z -z’ = 5 – 2i
3. Phép cộng và trừ số phức:
c. Phép trừ 2 số phức:
* ĐN4: sgk’ 
* NX: Cho z = a + bi, z’ = a’ + b’i. Khi đó z – z’ = a – a’ + (b – b’)i
Hoạt động 2: Ý nghĩa hình học của phép cộng và phép trừ số phức:
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
NX: Cho điểm M(a;b) biểu diễn số phức z = a + bi, khi đó vectơ cũng biểu diễn cho số phức z = a + bi
H: Cho z = 2 -3i , z’= -1+2i
Tìm các vectơ và biểu diễn các số phức z và z’.
Tìm tọa độ của vectơ + , - và tính z + z’, z – z’
H: NX gì về mối liên hệ giữa tọa độ + và z + z’, - và z – z’
Nghe, hiểu và thực hiện nhiệm vụ.
HS lên bảng và trình bày lời giải.
(2;-3), (-1;2)
 + = (1;-1)
z + z’= 1 – i
 - = (3;-5)
z – z’ = 3 – 5i
KL: Nếu và biểu diễn cho số phức z và z’ thì vectơ + , - biểu diễn cho số phức z + z’, z – z’.
Hoạt động 3: Tiếp cận phép nhân số phức
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
H: Cho z=a+bi, z’=a’+b’i. Tính z.z’=?
H: Tính z.z’ biết 
z=2-5i, z’=+2i
z=3-i, z’=3+i
Gv hướng dẫn học sinh lưu ý dùng hằng đẳng thức a2-b2
H: Tính 3(2-5i)
® Tổng quát hóa công thức k(a+bi)
H: Cho số phức z=a+bi
Tính z2
Tìm những đặc điểm của mặt phẳng phức biểu diễn các số phức z sao cho z2 là số thực?
Dùng tính chất phân phối của phép nhân và phép cộng thông thường để đưa ra kết quả
- Áp dụng công thức đưa ra kết quả
- HS trình bày kết quả lên bảng
Nêu công thức
Hs trình bày lời giải 
z2=a2-b2+2abi
z2ÎRÛa=0 hoặc b=0
Vậy tập hợp những điểm M nằm trên trục thực hoặc trục ảo
4. Phép nhân số phức:
ĐN5: sgk	
zz’=aa’-bb’+(ab’+a’b)
Hs trình bày bảng
Lưu ý: k(a+bi)=ka+kbi
Lưu ý: Có thể dùng hằng đẳng thức để tính giống như cộng, trừ, nhân, chia thông thường
Hoạt động 5: Tính chất của phép nhân số phức
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
VD: Hãy phân tích z2+4 thành nhân tử
Gv hướng dẫn hs đặt i2=-1 rồi phân tích theo hằng đẳng thức
Hs thực hiện
z2-4i2=z2-(2i)2
Tính chất của phép nhân số phức: sgk Đặt i2=-1
z2+4=z2-4i2
=(z-2i)(z+2i)
4. Củng cố toàn bài:
	Nhắc lại các tính chất của phép nhân các số phức
5. Hướng dẫn học bài ở nhà và ra bài tập về nhà: BT sgk
Tiết: 68
SỐ PHỨC (Tiết 3)
I. Mục tiêu:
	+ Về kiến thức: Giúp học sinh :
Hiểu cách định nghĩa số phức liên hợp và 2 tính chất cơ bản liên quan đến khái niệm này là số phức liên hợp của tổng, tích và mô đun của số phức. 
Hiểu được định nghĩa và phép chia cho số phức khác 0.
+ Về kĩ năng: Giúp học sinh 
Biết xác định số phức liên hợp.
Thực hiện thành thạo phép chia số phức.
+ Về tư duy và thái độ: tích cực hoạt động, có tinh thần hợp tác.
II. Chuẩn bị của giáo viên và học sinh:
	+ Giáo viên: Giáo án, phiếu học tập.
	+ Học sinh: Học bài cũ và làm bài tập ở nhà.
III. Phương pháp: 
Thuyết giảng, gợi mở, vấn đáp, hoạt động nhóm.
IV. Tiến trình bài dạy:
	1. Ổn định tổ chức và kiểm tra bài cũ:
	H1: Nêu các phép cộng, trừ, nhân số phức và các tính chất của các phép toán trên
	H2: Áp dụng tính (3-i)(1+2i)
	2. Bài mới:
Hoạt động 1: Số phức liên hợp
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
Tìm biểu thức liên hợp của và a, bÎR*
Gv liên hệ đưa ra định nghĩa số phức liên hợp
Cho ví dụ: 
Gọi hs cho vài ví dụ
 có biểu thức liên hợp là 
Cho ví dụ
Định nghĩa: Số phức liên hợp của z=a+bi với a,bÎR là a-bi kí hiệu là 
Þ
Hoạt động 2: Làm H6 và H7 sgk
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
Gọi học sinh chứng minh số phức z là số thực z= 
Nhận xét và ghi bảng.
Gọi học sinh chứng minh z= a2 +b2
Trình bày cách chứng minh .
Nhận xét.
Nêu cách chứng minh 
HS: Biểu diến hình học
z là số thực => z=a+0i=a
=>= a-0i=a.
Ngược lại z= tức là
a+bi = a-bib=0.
=> z là số thực 
Hoạt động 3: Mô đun của số phức
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
Vẽ hệ trục trục tọa độ:
Ta có = = .
Đưa ra định nghĩa .
Đưa ra ví dụ
Học sinh nêu lại công thức tính độ dài (Mô đun) của véctơ =(a,b)
O
y
M(z)
a
b
x
Đn: SGK
 =
Vd: =1
=.
Chú ý: z R => là giá trị tuyệt đối.
z=0=>=0
Hoạt động 4 : Phép chia cho số phức khác 0
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
Cho z = a + bi (a,b R) .
z – 1 = = ==
Vậy z . z – 1 = = 1
Cho ví dụ : 
Học sinh nắm cách biến đổi
Rút ra nghịch đảo của số phức
Số nghịch đảo
Đn: z 0 => z – 1 = 
Thương : 
 =z’.z – 1 = 
Hoạt động 5: Bài tập củng cố
	Phiếu học tập: 
	Cho số phức z=2+3i, z’=2-3i
Tính, , , 
Tìm Mô đun z, z’, z.z’
Tính , 
4. Củng cố toàn bài: Nhắc lại các khái niệm số phức, biểu diễn hình học, phép cộng và các tính chất
5. Hướng dẫn học bài ở nhà và ra bài tập về nhà: làm BT còn lại trang 190, 191 SGK, học bài và xem bài mới
Tiết: 69 BÀI TẬP SỐ PHỨC
I.Mục tiêu: 
	+ Kiến thức:
- Hiểu được khái niệm số phức, phân biệt phần thực phần ảo của một số phức.
- Biết biểu diễn một số phức trên mặt phẳng phức.
- Hiểu ý nghĩa hình học của khái niệm mô đun và số phức liên hợp.
	+Kĩ năng:
- Biết xác định phần thực phần ảo của một số phức cho trước và viết được số phức khi biết được 
phần thực và phần ảo.
- Biết sử dụng quan hệ bằng nhau giữa hai số phức để tìm điều kiện cho hai số phức bằng nhau.
- Biết biểu diễn tập hợp các số phức thỏa điều kiện cho trước trên mặt phẳng tọa độ.
- Xác định mô đun, số phức liên hợp của một số phức.
	+Thái độ: Nghiêm túc, hứng thú khi tiếp thu bài học, tích cực hoạt động.
II.Chuẩn bị của giáo viên và học sinh:
	+Giáo viên : Giáo án, bảng phụ, phiếu học tập.
	+Học sinh: làm bài tập trước ở nhà.
III.Phương pháp: Phối hợp các phương pháp gợi mở, nêu vấn đề, luyện tập, vấn đáp.
IV.Tiến trình bài học:
	1.Ổn định tổ chức: 1/
	2.Kiểm tra bài cũ kết hợp với giải bài tập.
	3.Bài mới
HOẠT ĐỘNG 1: BT 2/189 sgk
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
+Gọi học sinh cho biết dạng của số phức.Yêu cầu học sinh cho biết phần thực phần ảo của số phức đó.
+Gọi một học sinh giải bài tập 2/189. 
HD HS đưa về số phức dạng a + bi, lưu ý i2 = -1
+Gọi học sinh nhận xét
 +Trả lời
+Trình bày
+Nhận xét 
z = a + bi
a:phần thực
b:phần ảo
HOẠT ĐỘNG 2: BT 5/190 sgk
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
Cho 
Tính , , z2 , 3, 1+z+z2
GV: Cho HS nhắc lại công thức:
z – 1 = = 
|z| = ?, = ?
+ Nhận xét bài làm.
 +Trả lời
+Trình bày
+Nhận xét 
Lời giải của HS
HOẠT ĐỘNG 3: BT 12/191 sgk
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
Xác định tập hợp các điểm trong mp phức biểu diễn các Cho z = a + bi. Tìm 
+ Gọi hai học sinh giải bài tập 4a,c,d và bài tập 6
+ Nhận xét bài làm
+ Phát phiếu học tập 1
+Trả lời
+Trình bày
+Trả lời
+z = a + bi
+
+
HOẠT ĐỘNG 4
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
+ Nhắc lại cách biểu diễn một số phức trên mặt phẳng và ngược lại.
+Biểu diễn các số phức sau
Z = -2 + i , z = -2 – 3i , z = -2 + 0.i
+Yêu cầu nhận xét các số phức trên 
+ Yêu cầu nhận xét quĩ tích các điểm biểu diễn các số phức có phần thực bằng 3.
+ Vẽ hình
+Yêu cầu học sinh làm bài tập 3c.
+Gợi ý giải bài tập 5a.
+Yêu cầu học sinh giải bài tập 5b
+Nhận xét, tổng kết
+Biểu diễn
+Nhận xét quĩ tích các điểm biểu diễn. 
+Trình bày
+Nhận ra là phưong trình đương tròn tâm O (0;0), bán kính bằng 1.
+Trình bày
Củng cố: Hướng dẫn bài tập còn lại
Phụ lục: Phiếu học tập 1:
Câu 1: cho . Phần thực và phần ảo lần lược là
 A. 	B. 	C. 	D. 	
Câu 2: Số phức có phần thực bằng ,phần ảo bằng là
	A. 	B. 	C. 	D. 
Câu 3: . Khi đó khi
	A. m = -1 và n = 3 	B. m = -1 và n = -3	C. m = 1 và n = 3	D. m = 1 và n = -3
Câu 4: lần lượt bằng
	A. 	B. 	C. 	D. 
*********************************************************************************
Tiết: 70 
 LUYỆN TẬP SỐ PHỨC
I. Mục tiêu:
	+ Về kiến thức: Giúp học sinh :
Ôn lại kiến thức lý thuyết về số phức đã học
Làm được các bài tập sách giáo khoa.
+ Về kĩ năng: 
Rèn cho học sinh kĩ năng thực hiện các phép tính với số phức.
+ Về tư duy và thái độ: 
 - Tích cực hoạt động, có tinh thần hợp tác.
II. Chuẩn bị của giáo viên và học sinh:
	+ Giáo viên: Giáo án, phiếu học tập.
	+ Học sinh: Các kiến thức đã học về các tập hợp số.
III. Phương pháp: Thuyết giảng, gợi mở, vấn đáp, hoạt động nhóm.
IV. Tiến trình bài dạy: 
	1. Ổn định tổ chức: Ổn định lớp, điểm danh.
 2. Kiểm tra bài cũ:
 Câu hỏi: cho z = - 2 + 3i
 Hãy tính : 1+z+z, 
 GV gọi HS lên bảng giải.
 GV nhận xét và cho điểm.
	3. Bài mới:
Hoạt động 1: giải bài tập 10 ( chứng minh )
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
GV ghi đề bài tập 10
GV nhắc lại nhận xét: 
=w zw = z’ 
Gọi HS nêu hướng giải
Gọi HS lên bảng giải
GV nhận xét và kết luận
HS lắng nghe
HS nêu hướng giải
HS lên bảng giải
 LUYỆN TẬP
Bài10.CMRsố phức z1:
1+z+z+..+z =
 Giải:
 (1+z+z+..+z)(z-1) = z+z+..+z-(1+z+..+z)
= z- 1
1+z+z+..+z =
Hoạt động 2 : giải bài tập 11 ( hỏi số sau là số thực hay số ảo , với số phức z tùy ý )
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
GV ghi đề bài tập 11 a,c
GV cung cấp cho HS =
Từ =., gọi HS nhận xét = ?
GV: làm sao biết số phức có thể là số thực hay số ảo?
GV: gọi 2 HS lên tìm số phức liên hợp 
GV: gọi HS nhận xét lại
GV: giảng giải và kết luận
GV: gọi HS nêu hướng giải quyết câu b và nêu pp giải để HS về nhà giải
= = .= z.z = z
HS: nếu z = thì z là số thực
 nếu z = - thì z là số ảo
HS1 : lên bảng
HS2 : lên bảng
HS : nhận xét
HS : nêu hướng 
Bài 11 : 
a)
= +z
 = z+ 
 z+ là số thực
c)
=
 == - 
 là số ảo
Hoạt động 3: giải bài tập 12 ( xác định tập hợp các điểm trong mặt phẳng biểu diễn các số phức z thỏa mãn các điều kiện
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
GV: ghi đề bài tập 12 a,d
GV: số phức z = a+bi thì số phức z= ?
GV: vậy z là số thực âm thì a,b có điều kiện gì ?
GV: gọi HS1 lên bảng giải. 
GV: để là số ảo thì ?
GV: gọi HS2 lên bảng giải
GV: gọi HS nhận xét
GV: giảng giải và kết luận
GV: tt câu a, nếu zlà số thực dương hay số phức thì ntn ?
GV: kết lại pp cho HS về tự làm
HS: z= a- b+ 2abi
HS: 2ab = 0 và a- b< 0
HS1: lên bảng giải.
HS: z-i là số ảo 
 .
HS2 : lên bảng giải 
HS : nhận xét
HS : trả lời
Bài 12:
a) zlà số thực âm
a = 0 và b 0
Vậy tập hợp các điểm biểu diễn số phức z là trục Oy trừ điểm O(0;0)
d) là số ảo
 z-i là số ảo và zi
z là số ảo và zi
Vậy tập hợp các điểm bd số phức z là trục ảo trừ điểm I(0 ;1)
Hoạt động 4 : giải bài tập 13 ( giải phương trình ẩn z )
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
GV ghi đề bài tập 13 a,b,d
GV gọi HS nêu cách giải a
GV: làm sao để khử i dưới mẫu
GV: gọi HS lên bảng
GV: gọi HS nêu pp giải b
GV: lưu ý HS nhân mẫu 1+3i với liên hợp của nó là 1-3i để rut gọn số phức
GV: gọi HS nêu pp giải d 
GV: gọi HS lên bảng giải b,d
GV: gọi HS nhận xét bài làm của các bạn
GV: giảng giải lại và kết luận.
HS: iz = -2 + i
 z = 
HS: trả lời
HS1: lên bảng 
HS: chuyển vế đặt z chung .
HS: phương trình tích .. 
2HS: lên bảng
HS: nhận xét
Bài 13: giải phương trình
iz + 2 – i = 0
iz = -2 + i
z = = 
 = 1 + 2i
(2+3i)z = z – 1
(1+3i)z = - 1
z==
 == - +i d)(iz-1)(z+3i)(-2+3i)=0
4. Củng cố toàn bài: 
 GV nhắc lại :
 + nếu z = thì zlà số thực ; nếu z = - thì z là số ảo
 +nhắc lại về cách giải phương trình ẩn z 
5. Hướng dẫn học bài ở nhà và ra bài tập về nhà: làm phần còn lại BT 11,12,13 và BT14,15,16 SGK, học bài và xem bài mới

File đính kèm:

  • docT. 66-70.doc
Bài giảng liên quan