Giáo án Giải tích 12 - Tiết 68: Số phức (tiết 3)
III. Phương pháp:
Thuyết giảng, gợi mở, vấn đáp, hoạt động nhóm.
IV. Tiến trình bài dạy:
1. Ổn định tổ chức và kiểm tra bài cũ:
H1: Nêu các phép cộng, trừ, nhân số phức và các tính chất của các phép toán trên
H2: Áp dụng tính (3-i)(1+2i)
Tiết: 68 SỐ PHỨC (Tiết 3) I. Mục tiêu: + Về kiến thức: Giúp học sinh : Hiểu cách định nghĩa số phức liên hợp và 2 tính chất cơ bản liên quan đến khái niệm này là số phức liên hợp của tổng, tích và mô đun của số phức. Hiểu được định nghĩa và phép chia cho số phức khác 0. + Về kĩ năng: Giúp học sinh Biết xác định số phức liên hợp. Thực hiện thành thạo phép chia số phức. + Về tư duy và thái độ: tích cực hoạt động, có tinh thần hợp tác. II. Chuẩn bị của giáo viên và học sinh: + Giáo viên: Giáo án, phiếu học tập. + Học sinh: Học bài cũ và làm bài tập ở nhà. III. Phương pháp: Thuyết giảng, gợi mở, vấn đáp, hoạt động nhóm. IV. Tiến trình bài dạy: 1. Ổn định tổ chức và kiểm tra bài cũ: H1: Nêu các phép cộng, trừ, nhân số phức và các tính chất của các phép toán trên H2: Áp dụng tính (3-i)(1+2i) 2. Bài mới: Hoạt động 1: Số phức liên hợp Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Tìm biểu thức liên hợp của và a, bÎR* Gv liên hệ đưa ra định nghĩa số phức liên hợp Cho ví dụ: Gọi hs cho vài ví dụ có biểu thức liên hợp là Cho ví dụ Định nghĩa: Số phức liên hợp của z=a+bi với a,bÎR là a-bi kí hiệu là Þ Hoạt động 2: Làm H6 và H7 sgk Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Gọi học sinh chứng minh số phức z là số thực z= Nhận xét và ghi bảng. Gọi học sinh chứng minh z= a2 +b2 Trình bày cách chứng minh . Nhận xét. Nêu cách chứng minh HS: Biểu diến hình học z là số thực => z=a+0i=a =>= a-0i=a. Ngược lại z= tức là a+bi = a-bib=0. => z là số thực Hoạt động 3: Mô đun của số phức Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Vẽ hệ trục trục tọa độ: Ta có = = . Đưa ra định nghĩa . Đưa ra ví dụ Học sinh nêu lại công thức tính độ dài (Mô đun) của véctơ =(a,b) O y M(z) a b x Đn: SGK = Vd: =1 =. Chú ý: z R => là giá trị tuyệt đối. z=0=>=0 Hoạt động 4 : Phép chia cho số phức khác 0 Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng Cho z = a + bi (a,b R) . z – 1 = = == Vậy z . z – 1 = = 1 Cho ví dụ : Học sinh nắm cách biến đổi Rút ra nghịch đảo của số phức Số nghịch đảo Đn: z 0 => z – 1 = Thương : =z’.z – 1 = Hoạt động 5: Bài tập củng cố Phiếu học tập: Cho số phức z=2+3i, z’=2-3i Tính, , , Tìm Mô đun z, z’, z.z’ Tính , 4. Củng cố toàn bài: Nhắc lại các khái niệm số phức, biểu diễn hình học, phép cộng và các tính chất 5. Hướng dẫn học bài ở nhà và ra bài tập về nhà: làm BT còn lại trang 190, 191 SGK, học bài và xem bài mới
File đính kèm:
- T.68.doc