Giáo án Hình học 12 nâng cao - Chương III

Tiết: 34 – 35

I. Mục tiêu: HS cần nắm được:

+ Về kiến thức:

- Học sinh nắm được khái niệm vtpt của mặt phẳng, phương trình mặt phẳng.

- Nắm được cách viết phương trình mặt phẳng.

- Nắm được phương trình mặt phẳng trong các trường hợp đặc biệt

- Nắm vững các vị trí tương đối của hai mặt phẳng

- Điều kiện song song và vuông góc của hai mặt phẳng bằng phương pháp toạ độ

+ Về kỹ năng:

- Học sinh xác định được vtpt của mặt phẳng.

- Viết được phương trình mặt phẳng qua điểm cho trước và có vtpt cho trước

- Viết được phương trình mặt phẳng trong các trường hợp khác.

- Nhận biết vị trí tương đối của hai mặt phẳng căn cứ vào phương trình của chúng

+ Về tư duy – thái độ:

- biết quy lạ về quen.

- Rèn luyện tư duy logic, tư duy trừu tượng.

 

doc20 trang | Chia sẻ: tuanbinh | Lượt xem: 798 | Lượt tải: 0download
Bạn đang xem nội dung Giáo án Hình học 12 nâng cao - Chương III, để tải tài liệu về máy bạn hãy click vào nút TẢI VỀ
theo yêu cầu của GV
- = x. + 0. + 0.
Nên M (x; 0; 0)
3. Toạ độ của điểm:
SGK
Hoạt động 4: Liên hệ giữa toạ độ của vectơ và toạ độ hai điểm mút
Tgian
Hoạt động GV
Hoạt động HS
Ghi bảng
8’
- Cho nhắc lại các kết quả liên quan trong mặt phẳng. Từ đó dẫn đến kết quả tương tự trong không gian.
HĐ2: Cho HS thực hiện.
- Gợi ý: I là trung điểm đoạn AB, ta có: và dùng vectơ bằng nhau.
- Tương tự cho b và c
- Thức hiện yêu cầu của GV
- Nhận biết được từ gợi ý và giải quyết được bài toán.
4. Liên hệ giữa toạ độ của vectơ về toạ độ 2 điểm mút:
SGK
7’
- Dựa vào lời giải SGK, hướng dẫn HS theo hệ thống câu hỏi:
1/ Từ 4 điểm đã cho, hãy lấy ra 3 vectơ cùng gốc?
2/ Ba vectơ trên đồng phẳng khi nào? Từ đó hãy rút ra điều kiện để ba vectơ không đồng phẳng?
3/ Câu b dùng tính chất 7.
4/ Nhắc lại định nghĩa hình chóp đều?
Khi D.ABC là hình chóp đều suy được H là trọng tâm t/giác ABC.
- Dựa vào lời giải SGK và theo dõi, trả lời các câu hỏi của GV.
Ví dụ 2: (dùng bảng phụ đã ghi ví dụ trong SGK)
Tiết 2:
Hoạt động 5: Tích có hướng của hai vectơ
Tgian
Hoạt động GV
Hoạt động HS
Ghi bảng
8’
- Dẫn dắt như SGK và vào ĐN
- Cho đọc ví dụ 3
- Cho thêm ví dụ: Cho ba điểm A(1; 2; 1), B(-1; 0; 2), C(2; 1; 3). Tìm ?
- Cho một HS đứng tại chỗ trình bày, GV ghi lên bảng.
- Khắc sâu lại cách trình bày cho HS.
- Theo dõi HD về ví dụ 3
- Làm việc với ví dụ mới
- HS được gọi đứng tại chỗ trình bày ví dụ.
- Dùng định nghĩa kiểm tra HĐ3.
5. Tích có hướng của hai vectơ:
a/ ĐN: SGK
Hoạt động 6: Xét các tính chất
Tgian
Hoạt động GV
Hoạt động HS
Ghi bảng
8’
- Cho = (a; b; c) và = (a’; b’; c’). Tính = ? ?
Þ kết luận
- Các tính chất 2, 3 cho HS đọc SGK
* Chú ý: 
HD: Hãy nhắc lại công thức tính diện tích tam giác liên quan đến h/s sin, và liên hệ với tính chất 2, từ đó suy ra diện tích hình bình hành OABC.
- Cho ví dụ cụ thể để HS làm việc.
- GV kiểm tra, đánh giá (Phiếu học tập)
- 1 HS lên bảng trình bày c/m tính chất 1
- Các HS còn lại độc lập làm việc.
- Xem sách các t/c còn lại.
- Làm việc theo nhóm và cử đại diện trình bày.
- Lớp nhận xét, đánh giá
b/ Tính chất: SGK
Hoạt động 7: Ứng dụng của tích có hướng
Tgian
Hoạt động GV
Hoạt động HS
Ghi bảng
10’
- Dẫn dắt theo SGK và đi đến công thức.
HĐ4: dùng tính chất 1 của tích có hướng, dẫn dắt HS giải quyết hoạt động.
- Theo dõi và tiếp nhận kiến thức.
c/ Ứng dụng của tích có hướng:
- Diện tích hình bình hành ABCD: S = 
- Thể tích khối hộp:
V = 
(- Ghi kết quả cần ghi nhớ)
4’
5’
15’
- Các câu hỏi gợi ý:
a/ Hãy nêu cách c/m bốn điểm A, B, C, D không đồng phẳng? (Dùng kết quả đã học nào?)
b/ Có thể dựng được hình bình hành có 3 đỉnh là A, B, C? Tính diện tích của nó?
Từ đó suy ra diện tích t/giác ABC và đường cao?
H: Hãy nêu công thức tính diện tích tam giác có liên quan r? Þ tính r?
c, d/ Yêu cầu HS giải theo nhóm và báo kết quả (2 nhóm giải c, 2 nhóm giải d)
- Gợi ý: dùng t/chất 6 tích có hướng và chú ý góc trong tam giác khác góc giữa hai đường thẳng.
- Làm việc theo gợi ý, hướng dẫn của GV.
- Suy nghĩ phát hiện được , , không đồng phẳng.
SDABC = 
S = p.r
- Làm việc theo nhóm và cử đại diện báo kết quả.
Ví dụ 4:
Tiết 3:
Hoạt động 8: Phương trình mặt cầu
Tgian
Hoạt động GV
Hoạt động HS
Ghi bảng
5’
- Cho nhắc lại định nghĩa mặt cầu và cho tiếp cận SGK để đi đến pt mặt cầu tâm I, bán kính R
- Theo dõi GV và lĩnh hội kiến thức
6. Phương trình mặt cầu:
SGK
10’
HĐ5: Cho HS tự hoạt động
H: Tại sao M thuộc mặt cầu thì ?
HĐ6: Cho HS tự hoạt động
- Dẫn dắt HS đến pt (1)
Chú ý phần đảo
- Dẫn dắt (1) về (2) và cho nhận xét điều kiện nghiệm của (2)
Þ nhìn nhận tâm và bán kính
- Kết luận dạng khai triển của phương trình mặt cầu.
* Chú ý: Trong dạng khai triển hệ số của x2, y2, z2 bằng nhau và không có số hạng chứa xy, yz, zx (điều kiện cần)
- Tự hoạt động và báo kết quả
- Biết được DA1MA2 vuông tại M.
- Tự hoạt động và báo kết quả.
- Theo dõi và phát hiện kiến thức theo sự hướng dẫn của GV.
Dạng khai triển của phương trình mặt cầu: SGK
10’
HĐ7: Phân cho mỗi nhóm 1 câu.
- Yêu cầu HS tự làm
- Làm việc theo nhóm và báo kết quả
Hoạt động 9: Củng cố
Tgian
Hoạt động GV
Hoạt động HS
Ghi bảng
20’
Cho HS nhắc lại từng phần và ghi tóm tắt lên bảng:
- Toạ độ vectơ tổng, hiệu, tích vectơ với một số, mođun góc giữa hai vectơ
- Khoảng cách giữa hai điểm.
- Toạ độ của vectơ có hướng, tính chất.
- Công thức tính diện tích hình bình hành, thể tích hình hộp.
- Nêu phương trình mặt cầu cả hai dạng.
- Các dạng toán thường gặp.
Cho bài tập tổng hợp để hình thành các kỹ năng cần thiết.
- Trả lời các nội dung yêu cầu của GV.
- Các HS khác theo dõi phần trả lời của bạn và góp ý.
- Thực hiện giải bài tập theo nhóm để hình thành kỹ năng
* Nội dung toàn bài:
* Bài tập tổng hợp: Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(;;), B(;;), C(;;), D(;;).
a/ Chứng minh A, B, C, D là bốn đỉnh của tứ diện.
b/ Tính S∆ABC.
c/ Tính thể tích của tứ diện.
d/ Tính đường cao của tứ diện xuất phát từ C.
e/ Tính các góc của các cặp cạnh đối diện của tứ diện ABCD. 
f/ Viết p/t mặt cầu qua ba điểm A, B, C có tâm nằm trên mặt phẳng Oxy.
Tiết: 32 – 33 
BÀI TẬP §1
I. Mục tiêu
+Về kiến thức
Nắm và nhớ định nghĩa toạ độ vectơ, của điểm đối với một hệ toạ độ xác định trong không gian, pt mặt cầu.
 khắc sâu các công thức biểu thị quan hệ giữa các vectơ, biểu thức toạ độ của các vectơ, công thức về diện tích, thể tích khối hộp và tứ diện, công thức biểu thị mối quan hệ giữa các điểm.
+Về kĩ năng
Giải được các bài toán về điểm, vectơ đồng phẳng, không đồng phẳng, toạ độ của trung điểm, trọng tâm tam giác ...
Vận dụng được phương pháp toạ độ để giải các bài toán hình không gian.
Viết được pt mặt cầu với các điều kiện cho trước, xác định tâm và tính bán kính mặt cầu khi biết pt của nó.
+Về tư duy và thái độ
	Hình thành tư duy logic, lập luận chặc chẽ và biết quy lạ về quen.
	Tích cực tìm tòi, sáng tạo 
II.Chuẩn bị của giáo viên và học sinh
	Giáo viên: giáo án, sgk
	Học sinh: giải trước bài tập ở nhà, ghi lại các vấn đề cần trao đổi, sgk, các dụng cụ học tập liên quan.
III.Phương pháp
	Gợi mở, vấn đáp và đan xen hoạt động nhóm
IV.Tiến trình bài dạy
Ổn định lớp 1 phút
Bài cũ: (10 phút) Gọi 3 hs lên bảng thực hiện các câu hỏi
Câu hỏi 1:
Định nghĩa tích có hướng của hai vectơ
Áp dụng: cho hai vectơ . Tính 
Câu hỏi 2: Cho 4 điểm A(1;0;0), B(0;1;0), C(0;0;1), D(-2;1;-2). Chứng minh rằng A, B, C, D là bốn đỉnh của một tứ diện.
Câu hỏi 3: Phương trình x2 + y2 + z2 – 4x + 7y- 8z -5 = 0 có phải là pt mặt cầu không? Nếu là pt mặt cầu thì hãy xác định tâm và tính bán kính của nó.
Bài mới: chia lớp học thành 4 -5 nhóm nhỏ
Thời gian
H.động của giáo viên
H.động của học sinh
Ghi bảng
HĐ 1: giải bài tập 3 trang 81 sgk
7’
y/c nhắc lại công thức tính góc giữa hai vectơ?
y/c các nhóm cùng thực hiện bài a và b
gọi 2 nhóm trình bày bài giải câu a và câu b
Các nhóm khác theo dõi và nhận xét 
Gv tổng kết lại toàn bài
1 hs thực hiện
Hs trả lời câu hỏi
Các nhóm làm việc
 Đại diện 2 nhóm trình bày
nhận xét bài giải
Lắng nghe, ghi chép
Bài tập 3:
a) 
b)
HĐ 2: giải bài tập 6 trang 81 sgk
7’
Gọi M(x;y;z), M chia đoạn AB theo tỉ số k1: à toạ độ =? và liên hệ đến hai vectơ bằng nhau ta suy ra được toạ độ của M=?
Y/c các nhóm cùng thảo luận để trình bày giải
Gọi đại diện một nhóm lên bảng trình bày, các nhóm khác chú ý để nhận xét.
Cho các nhóm nhận xét
Gv sửa chữa những sai sót nếu có.
Hs lắng nghe gợi ý và trả lời các câu hỏi
Các nhóm thực hiện
Đại diện một nhóm thực hiện
Nhận xét
Lắng nghe và ghi chép
Bài tập 6:
Gọi M(x;y;z)
Vì , k 1: nên
kết luận
HĐ 3: giải bài tập 8 trang 81 sgk
5’
M thuộc trục Ox thì toạ độ M có dạng nào?
M cách đều A, B khi nào?
Tìm x?
Y/c các nhóm tập trung thảo luận và giải
Gọi đại diện một nhóm lên bảng trình bày
Cho các nhóm nhận xét
Gv sửa chữa những sai sót nếu có.
M(x;0;0)
MA = MB
1 hs trả lời
Các nhóm thực hiện
Đại diện một nhóm thực hiện
Nhận xét
Lắng nghe và ghi chép
Bài tập 8:
M(-1;0;0)
15’
Điều kiện để?
nếu thay toạ độ các vectơ thì ta có đẳng thức(pt) nào?
Hãy giải pt và tìm ra giá trị t
nhắc lại công thức sin(a+b)=?
Và nghiệm pt 
sinx = sina
chú ý: sin(-a)= - sina
áp dụng cho pt (1)
tìm được t và kết luận
Hs trả lời
2sin5t+cos3t+sin3t=0
Hs thực hiện
Hs trả lời
Hs thực hiện
b)
có 
...
 (1)
...
kết luận
Tiết 2 HĐ 4: giải bài tập 10 trang 81 sgk
7’
Để c/m 3 điểm thẳng hàng ta cần chỉ ra điều gì?
à cách c/m 3 điểm A, B, C không thẳng hàng?
Y/c các nhóm cùng thực hiện
Gọi đại diện một nhóm lên bảng trình bày
Cho các nhóm nhận xét
Gv sửa chữa những sai sót nếu có.
Hai vectơ cùng phương
c/m không cùng phương, hay 
Các nhóm thực hiện
Đại diện một nhóm thực hiện
Nhận xét
Lắng nghe và ghi chép
Bài tập 10:
a) C/m A, B, C không thẳng hàng
có 
Nên không cùng phương, hay A, B, C không thẳng hàng.
6’
Hs nhắc lại ct tính chu vi và diện tích tam giác
từ ct đó nhận thấy cần phải tìm các yếu tố nào?
Gọi 1 hs tính chu vi và 1 hs tính diện tích
Các hs khác chú ý để nhận xét
Cho hs nhận xét bài giải
Gv chỉnh sửa nếu thiếu sót
Hs thực hiện
Cv =AB+BC+AC
S=
Độ dài các cạnh tam giác
và độ dài vectơ 
2 Hs thực hiện
Lắng nghe và ghi chép
b)Đs: cv = 
 S =
4’
5’
Nêu các công thức liên hệ giữa đường cao AH và các thành phần khác trong tam giác?
Tính được S dựa vào công thức nào?
Gọi 1 hs trình bày bài giải
Các hs khác nhận xét
gv tổng kết lại
Cho hs nhận xét góc A bằng góc giữa hai vectơ nào? à cách Tính góc A,
 Tương tự cho góc B và C
S =
Hs thực hiện
nhận xét
Lắng nghe và ghi chép
Bằng góc giữa 2 vectơ 
Dựa vào cosA với
CosA=
H
c)
C
A
B
ĐS: AH = 
d)Tính các góc của tam giác
CosA= 0 
CosB =
CosC=
HĐ 4: giải bài tập 14 trang 82 sgk
6’
Để viết được phương trình mặt cầu cần biết các y/tố nào?
Ià toạ độ của I có dạng nào?
Dạng pt mặt cầu?
A,B, C thuộc mặt cầu suy ra được điều gì?
Y/c các nhóm thảo luận và trình bày bài giải
Cử đại diện trình bày
Các nhóm khác nhận xét
Gv xem xét và sửa chữa
Tâm và bán kính
I(0;b;c)
X2 + (y-b)2 + (z-c)2 =R2
Toạ độ 3 điểm đó thoả mãn pt mặt cầu
Các nhóm thực hiện
Đại diện một nhóm thực hiện
Nhận xét
Lắng nghe và ghi chép
Bài tập 14:
Đs 
x2 + (y-7)2 + (z-5)2 =26
5’
Tâm I thuộc trục Oxà toạ độ của I có dạng nào?
M/c tiếp xúc mp(Oyz) và tâm I thì O có thuộc mặt cầu không? àhãy so sánh IO và R 
từ đó suy ra a =?
Gọi 1 hs lên bảng trình bày
Các hs khác nhận xét 
Gv xem xét và chỉnh sửa
Hs trả lời
I(a;0;0)
IO = R
Hs trình bày
Hs nhận xét
Lắng nghe và ghi chép
b)Đs
 (x-2)2 + y2 + z2 = 4
5’
Mặt cầu (s) t/x mp(Oyz) và I(1;2;3)à R=?
Có tâm I, bk R y/c 1 hs lên bảng trình bày bài giải
Gv tổng kết lại và sửa chữa sai sót nếu có
Hs trình bày
Hs nhận xét
Lắng nghe và ghi chép
c)Đs
(x-1)2 + (y-2)2 + (z-3)2 =1
V. Củng cố, dặn dò(7’)
	Hướng dẫn hs một số bài tập còn lại
	Củng cố lại phương pháp tính diện tích, thể tích, viết pt mặt cầu, các phép toán vectơ...
	Hs về nhà làm thêm các bài tập trong sách bài tập trang 113
Tiết: 34 – 35 
§2: PHƯƠNG TRÌNH MẶT PHẲNG
I. Mục tiêu: HS cần nắm được:
+ Về kiến thức:
Học sinh nắm được khái niệm vtpt của mặt phẳng, phương trình mặt phẳng.
Nắm được cách viết phương trình mặt phẳng. 
Nắm được phương trình mặt phẳng trong các trường hợp đặc biệt 
- Nắm vững các vị trí tương đối của hai mặt phẳng
- Điều kiện song song và vuông góc của hai mặt phẳng bằng phương pháp toạ độ
+ Về kỹ năng:
Học sinh xác định được vtpt của mặt phẳng.
Viết được phương trình mặt phẳng qua điểm cho trước và có vtpt cho trước 
Viết được phương trình mặt phẳng trong các trường hợp khác.
Nhận biết vị trí tương đối của hai mặt phẳng căn cứ vào phương trình của chúng
+ Về tư duy – thái độ:
biết quy lạ về quen.
Rèn luyện tư duy logic, tư duy trừu tượng.
II. Chuẩn bị của giáo viên và học sinh:
+ Giáo viên: bảng phụ
+ Học sinh: học và đọc bài trước ở nhà.
III. Phương pháp: 
Gợi mở, vấn đáp
IV. Tiến trình bài học:
1. Kiểm tra bài cũ:(5/ ) Cho và. Một mp chứa và song song với. Tìm tọa độ một vectơ vuông góc với mp.
Hs trả lời, giáo viên chỉnh sửa: nên và=[,].
2. Bài mới: 
 Hoạt động 1: VTPT của mặt phẳng
tg
Hoạt động của GV
Hoạt động của HS
Ghi bảng
5’
+ Qua hình vẽ gv hướng dẫn hs hiểu VTPT của mặt phẳng.
+ Hs nêu khái niệm.
+Gv mhận xét: cùng phương với thì cũng là VTPT của mặt phẳng.
Đưa ra chú ý
Học sinh ghi chép.
I. Phương trình mặt phẳng:
1. VTPT của mặt phẳng:
a) Đn: (Sgk)
M
b) Chú ý:
 là VTPT của mp thì k 
( k0) cũng là VTPT của mp
Hoạt động 2: phương trình mặt phẳng.
tg
Hoạt động của GV
Hoạt động của HS
Ghi bảng
15’
Cho mp qua điểm M0(x0;y0;z0), và có vtpt =(A;B;C).
+ Nếu điểm M(x;y;z) thuộc mp thì có nhận xét gì về quan hệ giữa và
+ yêu cầu học sinh dùng điều kiện vuông góc triển khai tiếp.
+ Gv kết luận và nêu dạng phương trình mặt phẳng.
+ Từ pt(1), để xác định ptmp cần có những yếu tố nào?
+ Yêu cầu hs nêu hướng tìm vtpt, nhận xét, và gọi hai hs lên bảng.
Qua các vd trên gv nhấn mạnh một mặt phẳng thì có pt dạng (2)
+ Hs nhìn hình vẽ, trả lời.
+ Hs làm theo yêu cầu.
(x-x0; y-y0; z-z0); =(A;B;C)
Ta có 
A(x-x0)+B(y-y0)+C(z-z0)=0
+ hs ghi chép.
Hs nhận xét và ghi nhớ.
Hs giải ví dụ 1
Hs giải ví dụ 2
2. Phương trình mặt phẳng
a) Phương trình mp qua điểm M0(x0;y0;z0), và có vtpt =(A;B;C) có dạng:
A(x-x0)+B(y-y0)+C(z-z0)=0 (1) 
b) Thu gọn (1) ta có phương trình của mặt phẳng có dạng: Ax+By+Cz+D=0 (2)
c) Các ví dụ:
vd1: Cho A(1;-2;1), B(-5;0;1). Viết pt mặt phẳng trung trực của đoạn thẳng AB.
Giải:
Gọi mặt phẳng trung trực là mp.
mpqua trung điểm I(-2;-1;1) của AB, Vtpt (-6; 2; 0) hay (-3; 1; 0)
Pt mp: -3(x+2) +(y+1) =0
-3x +y-5 =0
Vd2: Viết pt mặt phẳng qua ba điểm M(0;1;1), N(1;-2;0), P(1;0;2).
Giải:
Mpcó vtpt =[, ]
= (-4;-2; 2), qua điểm N.
Ptmp: 2x+y-z=0
Hoạt động 3: Chứng minh định lý trang 83 sgk
tg
Hoạt động của GV
Hoạt động của HS
Ghi bảng
7’
Hs sau khi xem trước bài ở nhà, kết hợp gợi ý sgk, trình bày cm định lý.
3. Định lý:
Trong không gian Oxyz, mỗi phương trình Ax+By+Cz+D=0 
đều là phương trình của một mặt phẳng.
Chứng minh: (sgk/84)
Hoạt động 4: Các trường hợp riêng:
tg
Hoạt động của GV
Hoạt động của HS
Ghi bảng
10’
Dùng bảng phụ
+Yêu cầu hs đọc hđ 3/84 sgk, trả lời các ý.
Mp song song hoặc chứa Ox.
Gợi ý: nêu quan hệ giữa và .
Mp song song hoặc trùng với (Oxy)
Gợi ý: nêu quan hệ giữa và .
Yêu cầu hs về nhà tự rút ra kết luận cho Oy, Oz, (Oyz), (Oxz)
+ Hãy đưa pt Ax+By+Cz+D=0 (A,B,C,D khác 0)về dạng . Sau đó tìm giao điểm của mp với các trục tọa độ.
+ Dùng hình vẽ trên bảng phụ giới thiệu ptmp theo đoạn chắn .
+ yêu cầu hs nêu tọa độ các hình chiếu của điểm I và viết ptmp
Mp đi qua gốc toạ độ O. Thay tọa độ điểm O vào pt, kêt luận, ghi chép.
Nhìn hình vẽ trả lời
//mp
 A = 0
Nhìn hình vẽ trả lời
mp
cùng phương với A = B=0
Học sinh biến đổi, trình bày.
Hs làm vd3
II. Các trường hợp riêng:
Trong không gian (Oxyz) cho ():
Ax + By + Cz + D = 0
1) mp đi qua gốc toạ độ O
D = 0
2) mp song song hoặc chứa Ox A = 0
3) mp song song hoặc trùng với (Oxy)
A = B = 0.
4) Phương trình mp theo đoạn chắn:
(a,b,c khác 0).
Mp này cắt Ox, Oy, Oz lần lượt tại M(a;0,0), N(0;b;0), P(0;0;c) (Hs vẽ hình vào vở)
Vd3: Cho điểm I(1;2;-3). Hãy viết ptmp qua các hình chiếu của điểm I trên các trục tọa độ.
Giải: Hình chiếu của điểm I trên các trục tọa độ lần lượt là M(1;0,0), N(0;2;0), P(0;0;-3).
Ptmp : 
6x +3y-2z-6 =0
Tiết : 2 
IV. Tiến trình bài dạy
Hoạt động 1: Kiểm tra bài cũ, lĩnh hội kiến thức hai bộ số tỉ lệ
TG
Hoạt Động của GV
Hoạt Động của HS
Nội Dung Ghi Bảng
1. Yêu cầu HS nêu điều kiện để hai vectơ cùng phương
2. Phát phiếu học tập 1
GV: Ta thấy với t=
thì toạ độ của tương ứng bằng t lần toạ độ
của ; ta viết:
2 : -3 : 1 = 4 : -6 : 2
và nói bộ ba số
(2, -3,1) tỉ lệ với bộ ba số (4, -6, 2)
GV: Không tồn tại t
Khi đó ta nói bộ ba số
(1, 2, -3) không tỉ lệ 
với bộ ba số (2, 0, -1) 
và viết 1: 2:-32 : 0:-1
Tổng quát cho hai bộ số tỉ lệ, ta có khái niệm
sau: GV ghi bảng
1. HS trả lời: cùng
phương 
2. HS làm bài tập ở 
phiếu học tập 1
a) 
vì nên 
cùng phương
Ta có các tỉ số bằng 
nhau 
b) 
 và không cùng
phương
Ta có các tỉ số không
bằng nhau: 
III. Vị trí tương đối của
hai mặt phẳng 
1. Hai bộ số tỉ lệ:
Xét các bộ n số:
(x1, x2,, xn) trong đó x1, x2, , xn không đồng thời bằng 0
a) Hai bộ số (A1, A2, , An) và 
(B1, B2, , Bn) được gọi là tỉ lệ với nhau nếu có một số t sao cho A1=tB1,A2 = tB2, , An = tBn
Khi đó ta viết :
A1:A2:An=B1:B2:Bn
b) Khi hai bộ số (A1, A2,, An) và (B1, B2,, Bn) không tỉ lệ, ta viết:
A1:A2:AnB1:B2:Bn
c) Nếu A1= tB1, A2= tB2,
, An= tBn nhưng An+1 tBn+1, ta viết:
Hoạt động 2: Chiếm lĩnh tri thức:Cách xét vị trí tương đối của hai mặt phẳng.
Điều kiện để hai mặt phẳng vuông góc
- Yêu cầu HS nhận xét vị trí của hai mp () và () ở câu a và b của phiếu học tập 1
- GV hướng dẫn cho hs phân biệt trường hợp song song và trùng nhau bằng cách dựa vào hai phương trình
mp () và () có
tương đương nhau
không? Bằng cách xét thêm tỉ số của hai hạng tử tự do . Từ đó tổng quát các trường hợp của vị trí trương đối. 
-Nếu vuông gócthì có nhận xét gì về vị trí cuả () và() đk để hai mặt phẳng vuông góc.
-Học sinh nhận xét
Câu a: cùng phương do đó hai mp () và () chỉ có thể song song hoặc trùng nhau.
Câu b: không cùng phương 
 mp () và () ở vị trí cắt nhau
HS: 
2. Vị trí tương đối của hai mặt phẳng:
Cho hai mp lần lượt có ptr:
Ax+By+Cz+D=0
():A’x+B’y+C’z+D=0
a) () cắt ()
b)
c)
d) Điều kiện vuông góc giữa 2 mp:
Hoạt động 3: Thực hành, vận dụng kiến thức đã học để xét vị trí tương đối
- Yêu cầu HS làm
tập 16/89 : xét vị trí tương đối của các cặp mặt phẳng.
-Gọi học sinh lên bảng sửa
-Lưa ý cách làm bài của học sinh .
-Yêu cầu học sinh làm HĐ5SGK/87
-Yêu cầu các nhóm học tập lên bảng sửa 
- Giáo viên tổng hợp mối liên quan giữa các câu hỏi 
Học sinh làm bài tập 16
Học sinh chia thành 4 nhóm học tập 
-Mỗi nhóm sửa 1 câu trong 4 câu a, b, c, d.
Bài 16
a) x + 2y – z + 5 = 0 và 2x +3y–7z – 4 = 0
Ta có 1 : 2 : -12 : 3 : -72 mp cắt nhau
c) x + y + z – 1 = 0và 2x + 2y + 2z + 3 = 0
Ta có 2 mp song song
d) x – y + 2z – 4 = 0
và 10x – 10y + 20z – 40 = 0
Ta có 2 mp trùng nhau
Bài 2: HĐ5 
a) Hai mp song song
Vậy không tồn tại m
b) Từ câu a) suy ra không có m để 2 mp trùng nhau
c) Hai mp cắt nhau 
d) 
suy ra 2 mp vuông góc nhau
Hoạt động 4: Củng cố, hướng dẫn bài tập nhà
Điều kiện để hai mặt phẳng song song, hai mặt phẳng vuông góc
Làm bài tập 17, 18 SGK
Nội dung phiếu học tập 1:
Cho các cặp mặt phẳng:
a) và 
b) và 
Tìm các vectơ pháp tuyến của mỗi cặp mặt phẳng trên, nhận xét mối quan hệ của chúng (có cùng phương hay không)
Đồng thời xét tỉ số các thành phần toạ độ tương ứng của chúng có bằng nhau hay không?
3. Củng cố: (3’)
- Phương trình của mặt phẳng.
- Phương trình của mặt phẳng qua điểm cho trước và có vtpt cho trước.
- Cách xác định vtpt của mp, cách viết phương trình mặt phẳng.
4. Bài tập về nhà: 15/89 sgk
5. Bảng phụ: vẽ các trường hợp mp song song Ox; chứa Ox; song song (Oxy).
Cắt Ox, Oy, Oz tại M, N, P
Tiết: 36 – 38 
BÀI TẬP §2
I/ Mục tiêu:
+ Về kiến thức: Học sinh phải năm được pt của mặt phẳng, tính được khoảng cách từ một điểm đến một khoảng cách .Biết xác định vị trí tương đối của 2 mặt phẳng.
+ Về kỉ năng: 
- Lập được pt trình của mặt phẳng khi biết một số yếu tố.
- Vận dụng được công thức khoảng cách vào các bài kiểm tra.
- Thành thạo trong việc xét vị trí tương đối của 2 mặt phẳng
+ Về tư duy thái độ:
* Phát huy tính tư duy logic , sáng tạo và thái độ nghiêm túc trong quá trình giải bài tập
II/ Chuẩn bịcủa GV và HS:
+ Giáo viên: Giáo án, bảng phụ, phiếu học tập
+ Học sinh: Chuẩn bị các bài tập về nhà
III/ Phương pháp: 
Đàm thoại kết hợp hoạt động nhóm.
IV/ Tiến trình bài học:
1/ Ổn định tổ chức
2/ Kiểm tra bài cũ (5’)
 + Định nghĩa VTPT của mp
 + pttq của mp (α ) đi qua M (x0, y0, z0 ) và có một vtcp. = (A, B, C)
Tiết 1
HĐ1: Viết phương trình mặt phẳng 
TG
Hoạt động của GV
Hoạt đ

File đính kèm:

  • docCHUONG 3 HH 12 -NC.doc
Bài giảng liên quan