Giáo án tự chọn Toán 12 cơ bản - Sự biến thiên, cực trị, tiệm cận
Nội dung 2: Tính biến thiên và cực trị của hàm số.
Bài tập 3: Tìm các khoảng biến thiên và cực trị của các hàm số
a) b) c)
Hoạt động của GV Hoạt động của HS
H1:Gọi HS TB nêu lại các bước xét tính biến thiên của hàm số ?
- Cho các HS yếu ngồi theo nhóm và cùng giải
- Gọi HS yếu lên bảng trình bày ? TL1: Nêu đầy đủ các bước ?
- Lên bảng trình bày , HS khác nhận xét, sữa chữa ?
Bài tập 4: Cho hàm số , ( C)
a) Tìm m để đồ thị ( C) của hàm số đi qua điểm A( 2;0)
a) Tìm m để hàm số luôn đồng biến.
b) Tìm m để hàm số có cực đại và cực tiểu.
Tuần 4 Ngày soạn: Tiết 7-8 SỰ BIẾN THIÊN, CỰC TRỊ, TIỆM CẬN I. Mục tiêu : - Kiến thức: Củng cố kiến thức về tính biến thiên , cực trị của hàm số và đường tiệm cận - Kĩ năng: + Xét tính biến thiên của ba hàm số cơ bản + Tìm cực trị của ba hàm số cơ bản. + Tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số. II. Nội dung: Nội dung 1:Tiệm cận của của đồ thị hàm số Bài tập 1: Tìm tiệm cận của đồ thị các hàm số a) b) Hoạt động của GV Hoạt động của HS H1: Hãy nêu định nghĩa tiệm cận đứng, tiệm cận ngang của đồ thị hàm số y= f(x) ? H 2:Đồ thị hàm số có các đường tiệm cận nào ? - Phân công hai học sinh lên bảng trình bày TL1: Nêu định nghĩa đã học TL2: Tiệm cận đứng Tiệm cận ngang - Vận dụng định nghĩa tìm tiệm cận Bài tập 2: Tìm giá trị của m để tiệm cận ngang của đồ thị hàm số đi qua điểm M(-2; 3) Hoạt động của GV Hoạt động của HS H1:Hãy tìm pt của đường tiệm cận đứng và ngang ? H2: TL1: TCĐ : TCN: TL 2: Nội dung 2: Tính biến thiên và cực trị của hàm số. Bài tập 3: Tìm các khoảng biến thiên và cực trị của các hàm số a) b) c) Hoạt động của GV Hoạt động của HS H1:Gọi HS TB nêu lại các bước xét tính biến thiên của hàm số ? - Cho các HS yếu ngồi theo nhóm và cùng giải - Gọi HS yếu lên bảng trình bày ? TL1: Nêu đầy đủ các bước ? - Lên bảng trình bày , HS khác nhận xét, sữa chữa ? Bài tập 4: Cho hàm số , ( C) a) Tìm m để đồ thị ( C) của hàm số đi qua điểm A( 2;0) Tìm m để hàm số luôn đồng biến. Tìm m để hàm số có cực đại và cực tiểu. Giải: a) b) Hàm số luôn đồng biến . c) Hàm số có cực đại và cực tiểu có hai nghiệm phân biệt Bài tập 5: Cho hàm số Tím m để hàm số đạt cực đại tại x = 1 HD: Hàm số đạt cực đại tại x= 1 Bài tập về nhà : Bài 1: ( Cho HS khá) : Cho hàm số Tìm m để hàm số có cực trị. Tìm pt đường thẳng đi qua 2 điểm cực đại và cực tiểu. Bài 2: ( Cho HS TB- yếu ) Cho hàm số , (C ) Tìm m để đồ thị ( C) đi qua điểm A( -1;2) b) Cho m =1. Hãy tìm các khoảng biến thiên và cực trị của hàm số .
File đính kèm:
- Tuần 4.doc