Kế hoạch ôn tập Toán lớp 12
- Mặt cầu. Giao của mặt cầu và mặt phẳng. Mặt phẳng kính, đường tròn lớn. Mặt phẳng tiếp xúc với mặt cầu. Giao của mặt cầu với đường thẳng. Tiếp tuyến của mặt cầu. Công thức tính diện tích mặt cầu và thể tích của khối cầu.
- Mặt tròn xoay. Mặt nón, giao của mặt nón với mặt phẳng. Công thức tính diện tích xung quanh của hình nón, thể tích của khối nón.
- Mặt trụ, giao của mặt trụ với mặt phẳng. Công thức tính diện tích xung quanh của hình trụ và thể tích của khối trụ.
it tự nhiên. 3. Hàm số luỹ thừa. HS mũ. HS lôgarit (định nghĩa, t/c, đạo hàm và đồ thị). 4. PT, BPT mũ và lôgarit 1. Dùng các t/c của luỹ thừa để đơn giản biểu thức, so sánh các biểu thức có chứa luỹ thừa. 2. Dùng ĐN để tính giá trị của biểu thức chứa lôgarit đơn giản. 3.áp dụng các t/c của lôgarit vào các bài tập biến đổi, tính toán các biểu thức chứa lôgarit. 4. áp dụng t/c của các HS mũ, HS lôgarit vào việc so sánh hai số, hai biểu thức chứa mũ và lôgarit. 5. Vẽ đồ thị HS luỹ thừa, HS mũ, HS lôgarit. 6. Tính đạo hàm các hàm số y = ex, y = lnx. Tính đạo hàm các hàm số luỹ thừa, mũ, lôgarit và hàm số hợp của chúng. 7. Giải một số PT, BPT mũ đơn giản bằng các phương pháp (PP): PP đưa về luỹ thừa cùng cơ số, PP lôgarit hoá, PP dùng ẩn số phụ. 8. Giải một số PT, BPT lôgarit đơn giản bằng các phương pháp: PP đưa về lôgarit cùng cơ số, PP mũ hoá, PP dùng ẩn số phụ. Bài 1: Tính a, b, Bài 2: Rút gọn biểu thức Bài 3: a, Chứng minh b, So sánh các số và Bài 4: Vẽ đồ thị các hàm số : y = 2x , , , Bài 5: Tính đạo hàm của các hàm số a, y = 5x2 + lnx - 7.3x b, y = x.ex c, y = ln(1-2x), Bài 6: Giải các PT sau a, b, c, 25x - 7.5x + 6 = 0 d, 4.9x - 5. 12x + 8.16x =0 Bài 7 : Giải các PT sau a, 32x+1 - 5.3x + 2 = 0 b, 2x + 4 + 2x + 2 = 5x +1 + 3.5x c, d, e, g, Bài 8: Giải BPT sau a, 9x - 5.3x + 6 < 0 b, c, d, Chương 3: Nguyên hàm, tích phân và ứng dụng Kiến thức cơ bản Dạng toán cần luyện tập Bài tập minh hoạ (Xây dựng bài tập từ nhận biết thông hiểu vận dụng) 1. Định nghĩa, t/c của nguyên hàm. Bảng nguyên hàm của một số HS tương đối đơn giản. PP biến đổi số. Tính nguyên hàm từng phần. 1. Tính nguyên hàm của một số HS tương đối đơn giản dựa vào bảng nguyên hàm và cách tính nguyên hàm từng phần. 2. Sử dụng PP đổi biến số (khi đã chỉ rõ Bài 1: Tìm một nguyên hàm của hàm số f(x) = 4x3 - ex + cosx thoả mãn F(0) = 5 Bài 2: Tính a, b,, Bài 3: Tính 1) 2) 3) 4) 5) 6) 7 ) 2. Định nghĩa và các t/c của tích phân. Tính tích phân của hàm số liên tục bằng công thức Niu-tơn - Lai-bơ-nit. PP tích phân từng phần và phương pháp đổi biến số để tính tích phân. 3. Diện tích hình thang cong. Các công thức tính diện tích, thể tích nhờ tích phân. cách đổi biến số và không đổi biến số quá một lần) để tính nguyên hàm. 3. Tính tích phân của một HS tương đối đơn giản bằng định nghĩa hoặc PP tính tích phân từng phần. 4. Sử dụng PP đổi biến số (khi đã chỉ rõ cách đổi biến số và không đổi biến số quá một lần) để tính tích phân. 5. Tính diện tích một số hình phẳng, thể tích một số khối tròn xoay nhận trục hoành làm trục nhờ tích phân. Bài 4: Tính a, b, c, d, Bài 5: Tính các tích phân a, b, c, d, Bài 6: Tính các tích phân a, b, c, d, e, g, Bài 7: Tính các tích phân a, b, c, d, e, Bài 8: Tính diện tích hình phẳng giới hạn bởi các đường a, y = x3 , x = 1, x = 2, y = 0 b, y = x2 - 3x + 2, y = 0 c, y = x3 - 3x + 1, y = x + 1, x = 0, x = 3 d, y = x2 , y = x - 2 e, y = x2 + 1 và tiếp tuyến của (P) tại điểm A ( 2 ; 5 ) Bài 9: Tính thể tích khối tròn xoay do miền hình phẳng giới hạn bởi các đường sau quay xung quanh trục Ox: a, y = x2 -2x, y = 0 b, y = cosx, y = 0 ,x = 0, x = (Tham khảo các bài tập trong SGK GT12 chuẩn và nâng cao, đề thi TN ) Chương 4: Số phức Kiến thức cơ bản Dạng toán cần luyện tập Bài tập minh hoạ (Xây dựng bài tập từ nhận biết thông hiểu vận dụng) 1. Số phức. Dạng đại số của số phức. Biểu diễn hình học của số phức, môđun của số phức, số phức liên hợp. 2. Căn bậc hai của số thực âm; Giải phương trình bậc hai, quy về bậc hai với hệ số thực. 3. Acgumen và dạng lượng giác của số phức. Công thức Moa-vrơ và ứng dụng. Các phép tính cộng, trừ, nhân, chia số phức ở dạng đại số. Tìm nghiệm phức của phương trình bậc hai với hệ số thực (nếu < 0). Bài 1: Tìm phần thực, phần ảo, môđun,số phức liên hợp của các số phức sau a, z = 4 + 3i b, z = c, z = ( 1 - 5i )( 3 + 2i) d, Bài 2: Thực hiện phép tính: a, ( 2 + i ) - (5 - 7i ) b, ( )( 1 - 3i) c, d, Bài 3: Giải PT sau trên tập số phức a, ( 3 - 2i )z + ( 4 + 5i ) = 7 + 3i b, ( 1+ 3i )z - ( 2 + 5i ) = ( 2 + i )z Bài 4: Giải PT sau trên tập số phức a, z2 + 2z + 5 = 0 b, -3z2 + 2z -1 = 0 c, 5z2 -7z + 11 = 0 d, 8z2 -4z +1 = 0 Bài 5: Giải PT sau trên tập số phức z4 + z2 -6 = 0 B.HèNH HỌC Chương i:KHỐI ĐA DIỆN Kiến thức cơ bản Dạng toán cần luyện tập Bài tập minh hoạ (Xây dựng bài tập từ nhận biết thông hiểu vận dụng) Chủ đề 5. Khối đa diện Các kiến thức cơ bản cần nhớ : 1. Khối lăng trụ, khối chóp, khối chóp cụt, khối đa diện. Phân chia và lắp ghép các khối đa diện. 2. Khối đa diện đều, 5 loại khối đa diện đều: tứ diện đều, lập phương, bỏt diện đều, thập nhị diện đều và nhị thập diện đều. 3. Thể tích khối đa diện. Thể tích khối hộp chữ nhật. Công thức thể tích khối lăng trụ, khối chóp và khối chúp cụt. 1. Các dạng toán cần luyện tập: Tính thể tích khối lăng trụ, khối chóp và khối chóp cụt. 2.Một số chú ý: - Chú trọng rèn cho học sinh kỹ năng vẽ hình không gian. - Hệ thống lại cho học sinh các công thức tính diện tích tứ giác và tam giác đặc biệt. - Phân loại khối chóp, khối lăng trụ thường gặp để xác định đường cao, từ đó tính thể tích của chúng. Loại 1: Các khối đa diện đều thường gặp Loại 2: Khối chóp, khối lăng trụ có chiều cao cho trước, tìm hình dạng và diện tích đáy từ đó tính thể tích. Loại 3: Khối chóp có một mặt bên vuông góc với mặt đáy. Loại 4: Khối chóp có hai mặt bên cùng vuông góc với mặt đáy. Loại 5: Khối chóp có 3 cạnh cùng xuất phát từ một đỉnh, vuông góc với nhau từng đôi một. Loại 6: Hình chóp có các cạnh bên hợp với mặt đáy các góc bằng nhau. Bài tập 1(TN THPT PB năm 2008 - lần 1): Cho hình chóp tam giác đều S. ABC có cạnh đáy bằng a, cạnh bên bằng 2a. Gọi I là trung điểm của cạnh BC. a) Chứng minh SA vuông góc với BC. b) Tính thể tích khối chóp S.ABI theo a. Bài tập 2: Cho hình chóp tam giác đều S.ABC. Tính thể tích của khối chóp, biết: a) Cạnh đáy bằng 2cm, cạnh bên bằng 3cm. b) Cạnh đáy bằng 2cm, cạnh bên hợp với đáy 1 góc 600. c) Cạnh đáy bằng 2cm, mặt bên hợp với đáy 1 góc 600. Bài tập 3:Cho hình chóp tứ giác đều S.ABCD. Tính thể tích của khối chóp, biết: a) Cạnh đáy bằng 2cm, cạnh bên bằng 2cm. b) Cạnh đáy bằng 2cm, cạnh bên hợp với đáy 1 góc 600. c) Cạnh đáy bằng 2cm, mặt bên hợp với đáy 1 góc 600. Bài tập 4: Cho hình chóp tứ giác đều S. ABCD có cạnh đáy bằng a, góc giữa mặt bên và mặt đáy bằng 600. Tính thể tích của khối chóp S.ABCD theo a. Bài tập 5: Tính thể tích của khối chóp tứ giác đều S.ABCD biết SA = BC = a Bài tập 6: Cho hình chóp tứ giác đều S. ABCD có cạnh đáy bằng a, cạnh bên là a. Tính thể tích của khối chóp S.ABCD theo a. Bài tập7 (TN THPT PB năm 2006): Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy, cạnh bên SB bằng a. a) Tính thể tích của khối chóp S. ABCD. b) Chứng minh trung điểm của cạnh bên SC là tâm mặt cầu ngoại tiếp hình chóp S.ABCD. Bài tập 8(TN THPT PB năm 2007- lần 1): Cho hình chóp tam giác S. ABC có đáy ABC là tam giác vuông đỉnh B, cạnh bên SA vuông góc với đáy. Biết SA = AB = BC = a. Tính thể tích của khối chóp S. ABC. Bài tập 9: (TN THPT PB năm 2007- lần 2): Cho hình chóp tứ giác S. ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy và SA = AC. Tính thể tích khối chóp S. ABCD. Bài tập 10: (TN THPT PB năm 2008 - lần 2): Cho hình chóp tam giác S. ABC có đáy là tam giác ABC vuông đỉnh B, đường thẳng SA vuông góc với với mặt phẳng (ABC). Biết AB = a; BC = a và SA = 3a. a) Tính thể tích khối chóp S.ABC theo a. b) Gọi I là trung điểm của cạnh SC, tính độ dài đoạn thẳng BI theo a Bài tập 11 (TN THPT năm 2009): Cho hình chóp S. ABC có mặt bên SBC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Biết = 1200, tính thể tích của khối chóp S. ABC theo a. Bài tập 12: Cho hình chóp S.ABC. Đáy ABC là tam giác vuông cân tại A, cạnh huyền bằng , SA vuông góc với (ABC) .Tính thể tích khối chóp, biết: a) SB hợp với đáy một góc 300. b) (SBC) hợp với đáy một góc 450. Bài tập 13: Cho hình chóp S.ABCD. Đáy ABCD là hình vuông cạnh a, SA vuông góc với (ABCD) .Tính thể tích khối chóp, biết: a) SC hợp với đáy một góc 450. b) (SBC) hợp với đáy một góc 300. Bài tập 14: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a . SA (ABCD) và SA = 2a . a) Chứng minh BD vuông góc với đường thẳng SC. b) Tính thể tích khối chóp S.BCD theo a . Bài tập 15 : Cho hình lăng trụ đứng ABC. A'B'C' có đáy là tam giác ABC vuông cân tại A có cạnh góc vuông AB bằng a, cạnh bên của lăng trụ bằng a .Tính thể tích của khối lăng trụ này theo a. Bài tập 16: Cho hình lập phương ABCD.A’B’C’D có cạnh bằng a . a) Tính thể tích khối lập phương theo a b) Tính thể tích của khối chóp A. A’B’C’D theo a . Bài tập 17: Cho hình lăng trụ đều ABC.A’B’C có cạnh bên bằng cạnh đáy và bằng a . a) Tính thể tích khối lăng trụ theo a . b) Tính thể tích của khối chóp A'. ABC theo a . Bài tập 18(Đề kiểm tra học kỳ I - năm học 2009 - 2010): Cho hình chóp S. ABCD có đáy ABCD là hình thang cân (AB // CD), AB = a, DC = 2a, = 600, mặt bên (SAD) vuông góc với đáy, SA = SD = AD. Tính thể tích khối chóp S.ABCD theo a. Bài tập 19: Cho tứ diện ABCD, mặt bên (DBC) là tam giác cân tại D, mặt đáy (ABC) là tam giác vuông cân, cạnh huyền BC = 2a. Các mặt phẳng (DBC) và (ABC) vuông góc với nhau, cạnh bên DA hợp với đáy góc 450. Tính thể tích tứ diện ABCD theo a Bài tập 20: Cho hình chóp tứ giác S. ABCD, đáy ABCD là hình vuông cạnh a, hai mặt bên (SAB) và (SAD) cùng vuông góc với đáy, cạnh bên SB hợp với đáy góc 600. Tính thể tích khối chóp S.ABCD theo a Bài tập 21: Cho hình chóp tứ giác S. ABCD, đáy ABCD là hình thoi tâm O, đường chéo AC = 2a, đường chéo BD = 2b. Hai mặt chéo (SAC) và (SBD) cùng vuông góc với mặt đáy. Mặt bên (SBC) hợp với mặt đáy một góc bằng 450. Tính theo a, b thể tích khối chóp S. ABCD. Bài tập 22: Cho tứ diện SABC có ba cạnh SA, SB, SC đôi một vuông góc và có độ dài lần lượt là a, b, c. Tính thể tích khối tứ diện S ABC theo a, b, c. Bài tập 23: Tính thể tích của khối chóp S.ABC cho biết AB=BC=CA= ; góc giữa các cạnh SA,SB,SC với mặt phẳng (ABC) bằng . Bài tập 24: Cho hình chóp S. ABCD, đáy là hình chữ nhật có AB = 3a; AD = 4a. Các cạnh bên hợp với mặt đáy góc . Tính thể tích khối chóp theo a và . Chương ii:MặT CầU, MặT TRụ, MặT NóN Kiến thức cơ bản Dạng toán cần luyện tập Bài tập minh hoạ (Xây dựng bài tập từ nhận biết thông hiểu vận dụng) - Mặt cầu. Giao của mặt cầu và mặt phẳng. Mặt phẳng kính, đường tròn lớn. Mặt phẳng tiếp xúc với mặt cầu. Giao của mặt cầu với đường thẳng. Tiếp tuyến của mặt cầu. Công thức tính diện tích mặt cầu và thể tích của khối cầu. - Mặt tròn xoay. Mặt nón, giao của mặt nón với mặt phẳng. Công thức tính diện tích xung quanh của hình nón, thể tích của khối nón. - Mặt trụ, giao của mặt trụ với mặt phẳng. Công thức tính diện tích xung quanh của hình trụ và thể tích của khối trụ. - Tính diện tích của mặt cầu. Tính thể tích của khối cầu. - Tính diện tích xung quanh của hình nón, hình trụ. tính thể tích khối nón tròn xoay, khối trụ tròn xoay. Bài tập 1: Thiết diện qua trục của một khối nón là một tam giác vuông cân có cạnh huyền bằng a. a) Tính diện tích xung quanh của hình nón. b) Tính thể tích của khối nón. Bài tập 2:Thiết diện qua trục của một hình nón là một tam giác vuông cân có cạnh góc vuông bằng a. a) Tính diện tích xung quanh và của hình nón. b) Tính thể tích của khối nón. Bài tập 3 :Một hình nón có đường sinh là l=1 và góc giữa đường sinh và đáy là 450 a) Tình diện tích xung quanh của hình nón b) Tính thể tích của khối nón. Bài tập 4 : Trong không gian cho tam giác OIM vuông tại I, = 300 và cạnh IM = a, khi quay tam giác OIM quanh cạnh góc vuông OI thì đường gấp khúc OMI tạo thành một hình nón tròn xoay. a) Tính diện tích xung quanh của hình nón tròn xoay. b) Tính thể tích của khối nón tròn xoay. Bài tập 5:Cho hình nón đỉnh S đường cao SO, A và B là hai điểm thuộc đường tròn đáy sao cho khoảng cách từ điểm O đến AB bằng a và = 300 , = 600. a) Tính độ dài đường sinh và diện tích xung quanh của hình nón theo a. b) Tính thể tích của khối nón. Bài tập 6:Một hình trụ có bán kính r = 5cm, khoảng cách hai đáy bằng 7cm. Cắt hình trụ bởi một mặt phẳng song song với trục cách trục 3cm. a) Tính diện tích của thiết diện và diện tích xung quanh của hình trụ. b) Tính thể tích khối trụ. Bài tập 7:Thiết diện đi qua trục của khối trụ là hình vuông cạnh a. a) Tính diện tích xung quanh của hình trụ. b) Tính thể tích khối trụ. Bài tập 8:Trong không gian cho hình vuông ABCD cạnh a. Gọi I và H lần lượt là trung điểm của các cạnh AB và CD. Khi quay hình vuông đó xung quanh trục IH ta được một hình trụ tròn xoay a) Tính diện tích xung quanh của hình trụ. b) Tính thể tích của khối trụ. Bài tập 9:Một hình trụ có bán kính đáy R và đường cao bằng ; A và B là hai điểm trên hai đường tròn đáy sao cho góc hợp bởi AB và trục của hình trụ là 300. a) Tính diện tích xung quanh và diện tích toàn phần của h trụ. b) Tính thể tích của khối trụ tương ứng. Bài tập 10Một hình trụ có bán kính đáy R và có thiết diện qua trục là một hình vuông. a) Tính diện tích xung quanh của h trụ. b) Tính thể tích của khối trụ tương ứng. Bài tập 11: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và . a) Gọi O là trung điểm của SC. Chứng minh: OA = OB = OC = SO. Suy ra bốn điểm A, B, C, S cùng nằm trên mặt cầu tâm O bán kính . b) Cho SA = BC = a và . Tính diện tích mặt cầu và thể tích của khối cầu trên. Bài tập 12: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, và . Gọi O là tâm hình vuông ABCD và K là hình chiếu của B trên SC a) Chúng minh ba điểm O, A, K cùng nhìn đoạn SB dưới một góc vuông. Suy ra năm điểm S, D, A, K, B cùng nằm trên mặt cầu đường kính SB. b) Tính diện tích mặt cầu và thể tích khối cầu trên. Bài tập 13:Cho hình chóp tứ giác đều S.ABCD có cạnh đáy và cạnh bên đều bằng a. Xác định tâm và bán kính của mặt cầu đi qua năm điểm S, A, B, C, D. Bài tập 14: Cho hình chóp tứ giác S.ABCD có đáy là hình vuông cạnh a, cạnh SA = 2a và SA vuông góc với mặt phẳng đáy ABCD. a) Hãy xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp đó. b) Tính diện tích mặt cầu và thể tích khối cầu đó. c)Tính thể tích khối chóp S.ABCD. Chương iii:Phương pháp tọa độ trong không gian Kiến thức cơ bản Dạng toán cần luyện tập Bài tập minh hoạ (Xây dựng bài tập từ nhận biết thông hiểu vận dụng) - Hệ tọa độ trong không gian, tọa độ của một véctơ, tọa độ của một điểm, biểu thức tọa độ của các phép toán véctơ, khoảng cách giữa hai điêm. Tích véctơ (tích có hướng của hai véctơ. Phương trình mặt cầu. - Phương trình mặt phẳng: Véctơ pháp tuyến của mặt phẳng. Phương trình tổng quát của mặt phẳng. Điều kiện để hai mặt phẳng song song, vuông góc. Khoảng cách từ một điểm đến một mặt phẳng. - Phương trình đường thẳng: Phương trình tham số của đường thẳng. Phương trình chính tắc của đường thẳng. Điều kiện để hai đường thẳng chéo nhau, cắt nhau, song song hoặc vuông góc với nhau. 2. Các dạng toán cần luyện tập: - Tính tọa độ của tổng, hiệu, tích véctơ với một số; tính được tích vô hướng của hai véctơ, tích có hướng của hai véctơ. Chứng minh 4 điểm không đồng phẳng; Tính thể tích của khối tứ diện, khối hộp; Tính diện tích tam giác và diện tích hình bình hành bằng cách dùng tích có hướng của hai véctơ. - Tính khoảng cách giữa hai điểm có tọa độ cho trước. Xác định tọa độ tâm và bán kính của mặt cầu có phương trình cho trước. Viết phương trình mặt cầu (biết tâm và đi qua một điểm, biết đường kính). - Xác định véctơ pháp tuyến của mặt phẳng. Viết phương trình mặt phẳng. Tính góc, tính khoảng cách từ một điểm đến một mặt phẳng, tính khoảng cách giữa hai mặt phẳng song song. - Viết phương trình tham số của đường thẳng (biết đi qua hai điểm cho trước, đi qua một điểm và song song với một đường thẳng cho trước, đi qua một điểm và vuông góc với một mặt phẳng cho trước). Sử dụng phương trình của hai đường thẳng để xác định vị trí tương đối của hai đường thẳng đó.Tìm giao điểm của đường thẳng và mặt phẳng. Tìm hình chiếu vuông góc của một điểm trên một đường thẳng hoặc trên một mặt phẳng. 2. Một số chú ý: - Học sinh nào cũng phải biết cách tìm véctơ pháp tuyến của mặt phẳng nhờ tìm tích có hướng của hai véctơ chỉ phương của mặt phẳng đó (là hai véctơ không cùng phương, có giá song song hoặc nằm trên mặt phẳng ). - Học sinh nào cũng được tiếp cận với việc lập phương trình của mặt phẳng trong các trường hợp: Mặt phẳng đi qua gốc tọa độ; mặt phẳng song song hoặc chứa trục Ox (hoặc Oy hoặc Oz); Mặt phẳng song song hoặc trùng với một mặt phẳng tọa độ (Oxy) (hoặc (Oyz) hoặc (Ozx)); mặt phẳng đi qua cả ba điểm A (a; 0;0); B(0;b;0); C (0;0;c) với abc 0. - Việc tính khoảng cách giữa hai đường thẳng chéo nhau d và d' được đưa về tìm khoảng cách tự một điểm đến một mặt phẳng, cụ thể: Viết phương trình mặt phẳng chứa đường thẳng d' và song song với đường thẳng d, sau đó tìm khoảng cách từ một điểm M bất kỳ thuộc d tới mặt phẳng . Khoảng cách đó chính là khoảng cách giữa d và d', - Tập cho học sinh thói quen vẽ hình mô phỏng, nêu cách giải từng dạng toán tương ứng với bài tập cần thực hiện. Cụ thể: 3.1. Viết phương trình mặt phẳng đi qua ba điểm không thẳng hàng A, B, C. 3.2. Viết phương trình mặt phẳng đi qua M0 và song song với mặt phẳng . 3.3. Viết phương trình mặt phẳng trung trực của đoạn AB. 3.4. Viết phương trình mặt phẳng đi qua một điểm M0 cho trước và vuông góc với một đường thẳng d cho trước. 3.5. Viết phương trình mặt phẳng đi qua hai điểm A, B cho trước và vuông góc với mặt phẳng cho trước. 3.6. Viết phương trình mặt phẳng đi qua một điểm M0 cho trước và song song với hai đường thẳng d1, d2 cho trước. 3.7.Viết phương trình mặt phẳng đi qua một điểm M0 cho trước và chứa một đường thẳng d cho trước. 3.8. Viết phương trình mặt phẳng chứa đường thẳng d1 và song song với đường thẳng d2 cho trước. 3.9. Viết phương trình mặt phẳng qua điểm M0 song song với đường thẳng d cho trước và vuông góc với mặt phẳng qua trước. 3.10.Viết phương trình đường thẳng đi qua hai điểm A, B. 3.11. Viết phương trình đường thẳng đi qua một điểm M0 và song song với đường thẳng d cho trước. 3.12. Viết phương trình đường thẳng đi qua một điểm M0 và vuông góc với mặt phẳng cho trước. 3.13. Tìm điểm M1 là hình chiếu vuông góc của điểm M trên mặt phẳng cho trước. 3.14. Tìm điểm M2 đối xứng với điểm M qua mặt phẳng cho trước. 3.15. Tìm điểm M1 là hình chiếu vuông góc của điểm M trên đường thẳng d cho trước. 3.16. Tính khoảng cách từ điểm M0 đến mặt phẳng cho trước, đến đường thẳng d cho trước; 3.17. Tìm tọa độ giao điểm của đường thẳng d và mặt phẳng cho trước. 3. 18. Xác định tâm và tính bán kính của mặt cầu có phương trình cho trước. 3.19. Viết phương trình mặt cầu biết tâm và bán kính; biết đường kính AB với A, B là hai điểm cho trước; Biết tâm A và tiếp xúc với mặt phẳng cho trước; biết tâm A và tiếp xúc với đường thẳng d cho trước,... 3.20. Tìm tọa độ các điểm đặc biệt: Trung điểm của đoạn thẳng AB cho trước, trọng tâm của tam giác ABC cho trước, một đỉnh của hình bình hành,... 4. Một số bài tập (tham khảo): Bài 1 ( Đề thi TN năm 2006 - ban KHTN): Trong không gian với hệ tọa độ Oxyz cho ba điểm A(2;0;0); B(0;3;0); C(0;0;6), 1. Viết phương trình mặt phẳng đi qua ba điểm A, B, C. Tính diện tích tam giác ABC. 2. Gọi G là trọng tâm tam giác ABC. Viết phương trình mặt cầu đường kính OG. Bài 2 ( Đề thi TN năm 2006 - ban KHXH & NV): Trong không gian với hệ tọa độ Oxyz cho ba điểm A(-1;1;2); B(0;1;1); C(1;0;4), 1. Chứng minh tam giác ABC vuông. Viết phương trình tham số củađường thẳng AB. 2. Gọi M là điểm sao cho . Viết phương trình mặt phẳng đi qua M và vuông góc với đường thẳng BC. Bài 3 ( Đề thi TN năm 2007- lần 1 - ban KHTN): Trong không gian với hệ tọa độ Oxyz cho điểm M (-1;-1;0) và mặt phẳng (P) : x + y -2z -4 = 0. 1. Viết phương trình mặt phẳng (Q) đi qua M và song song với mặt phẳng (P). 2. Viết phương trình tham số của đường thẳng (d) đi qua M và vuông góc với (P). Tìm tọa độ giao đ
File đính kèm:
- On tap toan 12.doc