Sử dụng tính đồng biến, nghịch biến của hàm số để giải phương trình
Bài 3. Giải phương trình
Giải
Phương trình xác định với mọi x R.
PT log3(x2 + x + 3) – log3(2x2 + 4x + 5) = 2x2 + 4x + 5 – (x2 + x + 3)
log3(x2 + x + 3) + (x2 + x + 3) = log3(2x2 + 4x + 5) + 2x2 + 4x + 5 (1).
Xét hàm số f(t) = log3t + t, khi đó với mọi t > 0.
Suy ra hàm số f(t) luôn đồng biến khi t > 0.
Từ (1) ta có f(x2 + x + 3) = f(2x2 + 4x + 5) nên
Vậy phương trình có hai nghiệm x = -1; x = -2.
Sử dụng tính đồng biến, nghịch biến của hàm số để giải phương trìnhNội dungMột số bài tập ví dụ giải phương trìnhBài tập tự luyệnBài 1. Giải phương trình: GiảiĐiều kiện x 2/3 Vì x 2/3 x + 3 > 0 , ta được phương trình Khi đó , suy ra hàm số f(x) đồng biến .Mà f(2) = 5, do đó phương trình có nghiệm duy nhất x = 2. Bài 2. Giải phương trình: GiảiPhương trình tương đương với: Đặt f(t) = 2t + t, khi đó ta có f’(t) = 2t.ln2 + 1 > 0 nên hàm số f(t) đồng biến trên (- ∞; +∞ ). Do đó: (*) x2 – x = x – 1 x = 1 Vậy phương trình có nghiệm x = 1. Bài 3. Giải phương trìnhGiảiPhương trình xác định với mọi x R.PT log3(x2 + x + 3) – log3(2x2 + 4x + 5) = 2x2 + 4x + 5 – (x2 + x + 3) log3(x2 + x + 3) + (x2 + x + 3) = log3(2x2 + 4x + 5) + 2x2 + 4x + 5 (1).Xét hàm số f(t) = log3t + t, khi đó với mọi t > 0.Suy ra hàm số f(t) luôn đồng biến khi t > 0.Từ (1) ta có f(x2 + x + 3) = f(2x2 + 4x + 5) nên Vậy phương trình có hai nghiệm x = -1; x = -2. Bài 4. Chứng minh rằng phương trình sau đây không có nghiệm âm:GiảiĐặt xác định trên R. Ta nhận thấy f’’(x) 0 với mọi x 0, nên hàm số f(x) đồng biến trong khoảng (1; 3). Ta có f(1) = 4, f(3) = 8 4 16 thì phương trình vô nghiệm.Nếu a = 16 hoặc a 0 với mọi m, nên phương trình đã cho tương đương với PT: Để PT có 4 nghiệm phân biệt, điều kiện cần và đủ là đường thẳng y = a cắt đồ thị hàm số y = |x2 – 4x + 3| tại 4 điểm phân biệt. Ta có Bài 12 (tt)Ta có bảng Từ đó suy ra PT có 4 nghiệm phân biệt khi và chỉ khi 0 < a < 1. Khi đó ta có:Vậy để PT đã cho có 4 nghiệm phân biệt thì 0 < |m| < 1.Bài 13. Tìm tất cả các giá trị của m để phương trình sau có nghiệmx4 – (m – 1)x3 + 3x2 – (m – 1)x + 1 = 0GiảiTa thấy x = 0 không phải là nghiệm, chia hai vế PT cho x2 ≠ 0 ta được:Đặt phương trình trên trở thành Phương trình đã cho có nghiệm khi và chỉ khi PT(*) có nghiệm t với |t| ≥ 2, điều này tương đương với đường thẳng y = m cắt đồ thị hàm số tại điểm có hoành độ t với |t| ≥ 2.Bài 13 (tt)Ta có với mọi t mà |t| ≥ 2.Do đó hàm f(t) đồng biến với mọi giá trị t thỏa mãn |t| ≥ 2.Vậy để PT có nghiệm thì Bài tập tự luyệnBài 1. Giải các phương trình sau: a) 2 – x2 = 2cosx. c) 2log5(x+3) = x. d) 3x + 5x = 6x +2. Bài 2: Tìm m để phương trình có nghiệm duy nhất.Bài 3: Tìm m để phương trình:có nghiệm duy nhất.Bài 4: Tìm m để phương trình có nghiệm.Bài 5: Tìm các giá trị của a để phương trình sau đây có nghiệm duy nhất Bài 6: Biện luận theo m số nghiệm của phương trình m(x2 +3x +3) +x +1= 0
File đính kèm:
- Su_dung_tinh_dong_bien_nghich_bien_de_khao_satham_so.ppt