Tài liệu dùng cho ôn luyện thi tốt nghiệp THPT và Cao đẳng-Đại học

Câu III ( 1,0 điểm )

Cho hình vuông ABCD cạnh a.SA vuông góc với mặt phẳng ABCD,SA= 2a.

a.Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABCD

b.Vẽ AH vuông góc SC.Chứng minh năm điểm H,A,B,C,D nằm trên một mặt cầu.

II . PHẦN RIÊNG ( 3 điểm )

1.Theo chương trình chuẩn :

Câu IV.a ( 2,0 điểm )

Cho D(-3;1;2) và mặt phẳng (a ) qua ba điểm A(1;0;11), B(0;1;10), C(1;1;8).

1.Viết phương trình tham số của đường thẳng AC

2.Viết phương trình tổng quát của mặt phẳng ( a)

3.Viết phương trình mặt cầu tâm D bán kính R= 5.Chứng minh mặt cầu này cắt (a )

 

doc68 trang | Chia sẻ: tuanbinh | Lượt xem: 946 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Tài liệu dùng cho ôn luyện thi tốt nghiệp THPT và Cao đẳng-Đại học, để xem tài liệu hoàn chỉnh bạn hãy click vào nút TẢi VỀ
+) Viết PT mặt phẳng (P) qua M có VTPT là .
 +) giải hệ gồm 
 +) Hình chiếu H là giao điểm của (a) và (D) là nghiệm của hệ trên.
Bài toán 4: Tìm tọa độ điểm A/ đối xứng với điểm A qua đt hoặc mp
 * Đối xứng qua mp(a)
 +) Viết PT đ.thẳng (D) qua M có VTCP là .
 +) giải hệ gồm 
 +) Hình chiếu H là giao điểm của (a) và (D) là nghiệm của hệ trên.
 +) Tọa độ điểm đối xứng A/ : 
* Đối xứng quađường thẳng (D).
 +) Viết PT mặt phẳng (P) qua M có VTPT là .
 +) giải hệ gồm 
 +) Hình chiếu H là giao điểm của (a) và (D) là nghiệm của hệ trên.
 +) Tọa độ điểm đối xứng A/ : 
Bài toán 5: Xác định vị trí tương đối giữa mp và mp, đt và đt, đt và mp.
* Vị trí tương đối giữa mp (P) và mp(Q).
(P) : Ax + By + Cz + D = 0 ; (Q) : A/x + B/y + C/z + D/ = 0 
vôùi =(A;B;C) vaø =(A/; B/ ; C/ )
(P) º (Q) === 
(P) // (Q) == ¹ 
(P) cắt (Q) ¹Ú ¹ Ú ¹
Chuù yù :· a ^ a/ .= 0 AA/ + BB/ + CC/ = 0 
	· a caét a/ vaø khoâng cuøng phöông 
* vị trí tương đối giữa đ.thẳng (d1) và (d2).
 Xác định các VTCP =(a;b;c) , =(a/;b/; c/ ) ;Tính [,] 
Neáu :[,]= 
 	 +) chọn M1 Î(d1). Nếu M1Ï d2 thì d1 // d2 
 Nếu M1 Î(d2) thì d1 º d2 
 Neáu [,] ¹ 
 	tính [,]. 
	 	 +) Nếu: [,].= 0 thì d1 caét d2
 	 +) Nếu: [,]. 0 thì d1 chéo d2
 Hoặc ta giải hệ theo t và t/ (cho PTTS của hai đ.thẳng = theo tùng thành phần )
 	 	 +) hệ có nghiệm duy nhất t và t/ thì d1 caét d2 => giao điểm.
 	 +) nếu hệ VN thì d1 cheùo d2
* Vị trí tương đối giữa đ.thẳng (D) và mặt phẳng (P).Giải hệ PT
 +) thay PTTS của đ.thẳng (D) vào PT mp(P) ta được PT theo ẩn t.
 +) nếu PTVN thì (D)//mp(P).
 Nếu PTVSN thì (D) Ì mp(P).
 Nếu PT có nghiệm duy nhất thì (D) cắt mp(P) =>giao điểm?
Hoặc có thể dung cách sau:
 +) tìm tọa độ VTCP của (D) và VTPT của mp(P).
 +) Tính tích vô hướng . = ? 
 Nếu tích vô hướng này . 0 thì (D) cắt mp(P).
 Nếu . = 0 thì chọn điểm M bất kỳ trên (D) sau đó thay vào PT mặt phẳng (P) nếu thỏa mãn thì (D) Ì mp(P). còn ngược lại thì (D)//mp(P).
Bài toán 6: Tính khoảng cách.
* từ điểm A(x0;y0;z0) đến mặt phẳng (P): Ax+By+Cz+D = 0 .
 d(A;(a)) = 
* (P)//(Q) thì d((P),(Q)) = d(A;(Q)) với mọi điểm A chọn tùy ý trên (P)
* Khoảng cách tử đường thẳng (d) đến mặt phẳng (P) với (d)//mp(P)
 +) chọn điểm M bất kỳ trên (d). tính d(M;(d)) = ?
 +) d((d), mp(p)) = d(M,(mp(P))
* Khoảng cách từ điểm A đến đường thẳng (D) (không có công thức tính trong chương trình mới phân ban đối với ban cơ bản) nhưng ta có thể tính như sau:
 Cách 1
 +) lập PT mp(Q) qua A và vuông góc với (D).
 +) Tìm giao điểm H của mp(P) và đ.thẳng (D).
 +) Khoảng cách cần tìm là đoạn thẳng AH.
Cách 2 Áp dụng công thức : M thuộc d
* Khoảng cách giữa hai đường thẳng song song (d) và (d/).
 +) Chọn điểm M bất kỳ trên (d).
 +) Viết PT mặt phẳng (P) qua M có VTPT là .
 +) Tìm điểm N là giao điểm của (d/ ) và mp(P) ( bằng cách giải hệ gồm PTcủa (d/) và PT mặt phẳng (P) => nghiệm x,y,z là tọa độ điểm N).
 +) Khoảng cách cần tìm là độ dài đoạn thẳng MN.
* Khoảng cách giữa hai đường thẳng chéo nhau (d) và (d/).
 Cách 1:
 Viết PT mặt phẳng (P) chứa đường thẳng (d) và song song với (d/).
 +) chọn M trên đ.thẳng (d).
 +) VTPT của (a) là 
 => Viết PT mp(P) đi qua M và có VTPT 
 Chọn điểm N bất kỳ trên (d/) . Tính d(N, mp(P)) =?
d((d), (d/)) = d(N, mp(P)) 
Cách 2: Tìm đoạn vuông góc chung của hai đường thẳng đó.
Cách 3 Áp dụng công thức : 
 Bài toán 7: Tính góc .
* Góc giữa hai mp (P) A1x+B1y+C1z+D1 = 0 và mp(Q) A2x+B2y+C2z+D2 = 0 
Với thì = 
* Góc giữa đường thẳng (D): và mặt phẳng Ax+By+Cz+D = 0 
Với thì SinY=|cos() |= = 
Góc giữa hai đường thẳng (d) : Và ( ): 
Với thì = 
Tieáp theo: Tuyển tập các Đề ôn thi TNTHPT năm 2008 – 2009
ĐỀ SỐ 1
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
 Câu I ( 3,0 điểm ) 
 Cho hàm số có đồ thị (C)
Khảo sát sự biến thiên và vẽ đồ thị (C).
b.Viết PTTT với (C) biết vuông góc với đường thẳng d: x+3y-2=0
c.Dùng đồ thị (C) , xác định k để phương trình sau có đúng 3 nghiệm phân biệt 
 .
 Câu II ( 3,0 điểm ) 
Giải phương trình 
b.Cho hàm số . Tìm nguyên hàm F(x ) của hàm số , biết rằng đồ thị của hàm số F(x) đi qua điểm M(; 0) .
c.Tìm giá trị nhỏ nhất của hàm số với x > 0 .
Câu III ( 1,0 điểm ) 
Cho hình chóp tam giác đều có cạnh đáy bằng và đường cao h = 1 . Hãy tính diện tích của mặt cầu ngoại tiếp hình chóp .
II . PHẦN RIÊNG ( 3 điểm ) 
 Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó . 
Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
Trong không gian với hệ tọa độ Oxyz , cho đường thẳng
 (d) : và mặt phẳng (P) : 
 a. Chứng minh rằng (d) cắt (P) tại A . Tìm tọa độ điểm A .
 b. Viết phương trình đường thẳng () đi qua A , nằm trong (P) và vuông góc với (d) .
Câu V.a ( 1,0 điểm ) : 
Tính diện tích hình phẳng giới hạn bởi các đường : và trục hoành 
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
Trong không gian với hệ tọa độ Oxyz , cho đường thẳng 
(d ) : và mặt phẳng (P) : 
 a. Chứng minh rằng (d) nằm trên mặt phẳng (P) .
 b. Viết phương trình đường thẳng () nằm trong (P), song song với (d) và cách (d) một khoảng 
là .
Câu V.b ( 1,0 điểm ) : 
 Tìm căn bậc hai của số phức 
Đề Số 2
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
 Câu I ( 3,0 điểm ) Cho hàm số có đồ thị (C)
a.Khảo sát sự biến thiên và vẽ đồ thị (C).
b.Viết phương trình tiếp tuyến với đồ thị (C) đi qua điểm M(1;8) . .
 Câu II ( 3,0 điểm ) 
a. Giải bất phương trình 
b. Tính tích phân : I = 
c.Giải phương trình trên tập số phức .
Câu III ( 1,0 điểm ) 
Một hình trụ có bán kính đáy R = 2 , chiều cao h = . Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục của hình trụ . Tính cạnh của hình vuông đó .
II . PHẦN RIÊNG ( 3 điểm ) 
 1.Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 Trong không gian với hệ tọa độ Oxyz , cho điểm M(1;0;5) và hai mặt phẳng 
(P) : và (Q) : .
 a. Tính khoảng cách từ M đến mặt phẳng (Q) .
 b. Viết phương trình mặt phẳng ( R ) đi qua giao tuyến (d) của (P) và (Q) đồng thời vuông góc với mặt phẳng (T) : . 
Câu V.a ( 1,0 điểm ) : 
 Cho hình phẳng (H) giới hạn bởi các đường y = và trục hoành . Tính thể tích của khối tròn xoay tạo thành khi quay hình (H) quanh trục hoành . 
2.Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
Trong không gian với hệ tọa độ Oxyz , cho đường thẳng (d ) : và 
mặt phẳng (P) : .
 a. Tìm tọa độ giao điểm của đường thẳng (d) và mặt phẳng (P) .
 b. Tính góc giữa đường thẳng (d) và mặt phẳng (P) .
 c. Viết phương trình đường thẳng () là hình chiếu của đường thẳng (d) lên mặt phẳng (P).
Câu V.b ( 1,0 điểm ) : 
 Giải hệ phương trình sau : 
 ĐỀ SỐ 3
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
 Câu I ( 3,0 điểm ) 
 Cho hàm số có đồ thị (C)
a.Khảo sát sự biến thiên và vẽ đồ thị (C).
b.Dùng đồ thị (C ) , hãy biện luận theo m số nghiệm thực của phương trình
 Câu II ( 3,0 điểm ) 
a.Giải phương trình 
b.Tính tích phân : I = 
c.Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = trên 
Câu III ( 1,0 điểm ) 
Cho tứ diện SABC có ba cạnh SA,SB,SC vuông góc với nhau từng đôi một với SA = 1cm,SB = SC = 2cm .Xác định tân và tính bán kính của mặt cấu ngoại tiếp tứ diện , tính diện tích của mặt cầu và thể tích của khối cầu đó .
II . PHẦN RIÊNG ( 3 điểm ) 
 1. Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 Trong không gian với hệ tọa độ Oxyz , cho 4 điểm A(2;1;1) ,B(0;2;1) ,C(0;3;0) D(1;0;1) .
 a. Viết phương trình đường thẳng BC .
 b. Chứng minh rằng 4 điểm A,B,C,D không đồng phẳng .
 c. Tính thể tích tứ diện ABCD .
Câu V.a ( 1,0 điểm ) : Tính giá trị của biểu thức .
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
 Trong không gian với hệ tọa độ Oxyz cho điểm M(1;1;1) , hai đường thẳng 
 , và mặt phẳng (P) : 
 a. Tìm điểm N là hình chiếu vuông góc của điểm M lên đường thẳng () .
 b. Viết phương trình đường thẳng cắt cả hai đường thẳng và nằm trong mặt phẳng (P) .
Câu V.b ( 1,0 điểm ) : 
 Tìm m để đồ thị của hàm số với cắt trục hoành tại hai điểm phân biệt A,B sao cho tuếp tuyến với đồ thị tại hai điểm A,B vuông góc nhau .
 ĐỀ SỐ 4.
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
 Câu I ( 3,0 điểm ) 
 Cho hàm số có đồ thị (C)
a.Khảo sát sự biến thiên và vẽ đồ thị (C).
b.Viết phương trình tiếp tuyến với đồ thị (C) đi qua điểm M(; ) . .
 Câu II ( 3,0 điểm ) 
a.Cho hàm số . Giải phương trình 
b.Tính tìch phân : 
 c.Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số .
Câu III ( 1,0 điểm ) 
Một hình nón có đỉnh S , khoảng cách từ tâm O của đáy đến dây cung AB của đáy bằng a , , . Tính độ dài đường sinh theo a .
II . PHẦN RIÊNG ( 3 điểm ) 
 Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng ,
 a. Chứng minh rằng đường thẳng và đường thẳng chéo nhau .
 b. Viết phương trình mặt phẳng ( P ) chứa đường thẳng và song song với đường thẳng . 
Câu V.a ( 1,0 điểm ) : 
 Giải phương trình trên tập số phức .. 
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
Trong không gian với hệ tọa độ Oxyz cho điểm M(2;3;0) , mặt phẳng (P ) : 
 và mặt cầu (S) : .
 a. Tìm điểm N là hình chiếu của điểm M lên mặt phẳng (P) .
 b. Viết phương trình mặt phẳng (Q) song song với (P) và tiếp xúc với mặt cầu (S) .
Câu V.b ( 1,0 điểm ) : 
 Biểu diễn số phức z = + i dưới dạng lượng giác .
 ĐỀ SỐ 5.
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
 Câu I ( 3,0 điểm ) 
 Cho hàm số có đồ thị (C)
a.Khảo sát sự biến thiên và vẽ đồ thị (C).
b.Tìm tất cả các giá trị của tham số m để đường thẳng (d) : y = mx + 1 cắt đồ thị của hàm số đã cho tại hai điểm phân biệt .
 Câu II ( 3,0 điểm ) 
a.Giải bất phương trình 
b.Tính tìch phân : I = 
c.Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn .
Câu III ( 1,0 điểm ) 
 Cho hình lăng trụ tam giác đều ABC.A’B’C’ có tất cà các cạnh đều bằng a .Tính thể tích của hình lăng trụ và diện tích của mặt cầu ngoại tiếp hình lăng trụ theo a .
II . PHẦN RIÊNG ( 3 điểm ) 
 Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng và .
 a. Chứng minh rằng hai đường thẳng vuông góc nhau nhưng không cắt nhau .
 b. Viết phương trình đường vuông góc chung của .
Câu V.a ( 1,0 điểm ) : 
Tìm môđun của số phức .
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng () : và 
hai đường thẳng ( ) : , ( ) : .
 a. Chứng tỏ đường thẳng () song song mặt phẳng () và () cắt mặt phẳng () .
 b. Tính khoảng cách giữa đường thẳng () và ( ).
 c. Viết phương trình đường thẳng () song song với mặt phẳng () , cắt đường thẳng () và ( ) lần lượt tại M và N sao cho MN = 3 .
Câu V.b ( 1,0 điểm ) : 
Tìm nghiệm của phương trình , trong đó là số phức liên hợp của số phức z . 
ĐỀ SỐ 6.
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
 Câu I ( 3,0 điểm ) 
 Cho hàm số có đồ thị (C)
a.Khảo sát sự biến thiên và vẽ đồ thị (C).
b.Viết phương trình tiếp tuyến với đồ thị (C) đi qua điểm M (;0) . .
 Câu II ( 3,0 điểm ) 
a.Cho . Tính lg7 và lg5 theo a và b .
b.Tính tìch phân : I = 
 c.Tìm giá trị lớn nhất và giá trị nhỏ nếu có của hàm số .
Câu III ( 1,0 điểm ) 
 Tính tỉ số thể tích của hình lập phương và thể tích của hình trụ ngoại tiếp hình lập phương đó.
II . PHẦN RIÊNG ( 3 điểm ) 
 1. Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC với các đỉnh là A(0;;1) , 
 B(;1;2) , C(1;;4) .
 a. Viết phương trình chính tắc của đường trung tuyến kẻ từ đỉnh A của tam giác .
 b. Viết phương trình tham số của đường thẳng đi qua điểm C và vuông góc với mặt
 phẳng (OAB) với O là gốc tọa độ . 
Câu V.a ( 1,0 điểm ) : 
 Cho hình phẳng (H) giới hạn bởi các đường (C) : , hai đường thẳng x = 0 , x = 1 và trục hoành . Xác định giá trị của a để diện tích hình phẳng (H) bằng lna .
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
Trong không gian với hệ tọa độ Oxyz , cho điểm M ( và hai mặt phẳng 
() : , (.
 a. Chứng tỏ rằng hai mặt phẳng () và () cắt nhau . Viết phương trình tham số của 
 giao tuyến của hai mặt phằng đó .
 b. Tìm điểm H là hình chiếu vuông góc của điểm M trên giao tuyến .
Câu V.b ( 1,0 điểm ) : 
Cho hình phẳng (H) giới hạn bởi các đường (C) : y = và (G) : y = . Tính thể tích của khối tròn xoay tạo thành khi quay hình (H) quanh trục hoành . 
 ĐỀ SỐ 7.
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
 Câu I ( 3,0 điểm ) 
 Cho hàm số có đồ thị (C)
a.Khảo sát sự biến thiên và vẽ đồ thị (C).
b.Cho họ đường thẳng với m là tham số . Chứng minh rằng luôn cắt đồ thị (C) tại một điểm cố định I .
 Câu II ( 3,0 điểm ) 
a.Giải bất phương trình 
b.Cho với f là hàm số lẻ. Hãy tính tích phân : I = .
c.Tìm giá trị lớn nhất và giá trị nhỏ nhất nếu có của hàm số .
Câu III ( 1,0 điểm ) 
Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh bằng a . Hình chiếu vuông góc của A’ xuống mặt phẳng (ABC) là trung điểm của AB . Mặt bên (AA’C’C) tạo với đáy một góc bằng . Tính thể tích của khối lăng trụ này .
II . PHẦN RIÊNG ( 3 điểm ) 
1.Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 Trong không gian với hệ tọa độ Oxyz .Viết phương trình mặt phẳng (P) qua O , vuông góc với mặt phẳng (Q) : và cách điểm M(1;2;) một khoảng bằng . 
Câu V.a ( 1,0 điểm ) : Cho số phức . Tính giá trị của .
2.Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
Trong không gian với hệ tọa độ Oxyz , cho đường thẳng (d ) : và mặt phẳng (P) : .
 a. Viết phương trình mặt cầu có tâm nằm trên (d) , bán kính bằng 3 và tiếp xúc (P) .
 b. Viết phương trình đường thẳng () qua M(0;1;0) , nằm trong (P) và vuông góc với 
 đường thẳng (d) .
Câu V.b ( 1,0 điểm ) : 
 Trên tập số phức , tìm B để phương trình bậc hai có tổng bình phương hai nghiệm bằng . 
 ĐỀ SỐ 8.
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
 Câu I ( 3,0 điểm ) 
 Cho hàm số có đồ thị (C)
a.Khảo sát sự biến thiên và vẽ đồ thị (C) .
b.Chứng minh rằng đường thẳng (d) : y = mx 42m luôn đi qua một điểm cố định của đường cong (C) khi m thay đổi . .
 Câu II ( 3,0 điểm ) 
a.Giải phương trình 
b.Tính tích phân : I = 
c.Viết phương trình tiếp tuyến với đồ thị , biết rằng tiếp tuyến này song song với đường thẳng (d) : .
Câu III ( 1,0 điểm ) 
 Cho hình chóp S,ABC . Gọi M là một điểm thuộc cạnh SA sao cho MS = 2 MA . Tính tỉ số thể tích của hai khối chóp M.SBC và M.ABC .
II . PHẦN RIÊNG ( 3 điểm ) 
Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC có các đỉnh A,B,C lần lượt nằm trên các trục Ox,Oy,Oz và có trọng tâm G(1;2;) Hãy tính diện tích tam giác ABC 
Câu V.a ( 1,0 điểm ) : 
 Cho hình phẳng (H) giới hạn bởi các đường ( C ) : y = , (d) : y = và trục hoành . Tính diện tích của hình phẳng (H) . 
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
Trong không gian với hệ tọa độ Oxyz , cho hình lập phương ABCD.A’B’C’D’ . Biết A’(0;0;0) , B’(a;0;0),D’(0;a;0) , A(0;0;a) với a>0 . Gọi M,N lần lượt là trung điểm các cạnh AB và B’C’ .
 a. Viết phương trình mặt phẳng (P) đi qua M và song song với hai đường thẳng AN và 
 BD’ .
 b. Tính góc và khoảng cách giữa hai đường thẳng AN và BD’ .
Câu V.b ( 1,0 điểm ) : 
 Tìm các hệ số a,b sao cho parabol (P) : tiếp xúc với hypebol (H) Tại điểm M(1;1)
 ĐỀ SỐ 9.
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
 Câu I ( 3,0 điểm ) 
 Cho hàm số có đồ thị (C)
a.Khảo sát sự biến thiên và vẽ đồ thị (C).
b.Viết phương trình tiếp tuyến với đồ thị (C) đi qua điểm M(; ) . .
 Câu II ( 3,0 điểm ) 
a.Cho hàm số . Giải phương trình 
b.Tính tích phân : 
 c. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số .
Câu III ( 1,0 điểm ) 
Một hình nón có đỉnh S , khoảng cách từ tâm O của đáy đến dây cung AB của đáy bằng a , , . Tính độ dài đường sinh theo a .
II . PHẦN RIÊNG ( 3 điểm ) 
1.Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng ,
 a. Chứng minh rằng đường thẳng và đường thẳng chéo nhau .
 b. Viết phương trình mặt phẳng ( P ) chứa đường thẳng và song song với đường thẳng . 
Câu V.a ( 1,0 điểm ) : 
Giải phương trình trên tập số phức .. 
2.Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
Trong không gian với hệ tọa độ Oxyz cho điểm M(2;3;0) , mặt phẳng 
(P ) : và mặt cầu (S) : .
 a. Tìm điểm N là hình chiếu của điểm M lên mặt phẳng (P) .
 b. Viết phương trình mặt phẳng (Q) song song với (P) và tiếp xúc với mặt cầu (S) .
Câu V.b ( 1,0 điểm ) : 
 Biểu diễn số phức z = + i dưới dạng lượng giác .
 ĐỀ SỐ 10.
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm )
Câu I ( 3,0 điểm ) Cho hàm số : y = – x3 + 3mx – m có đồ thị là ( Cm ) .
1.Tìm m để hàm số đạt cực tiểu tại x = – 1.
2.Khảo sát hàm số ( C1 ) ứng với m = – 1 .
3.Viết phương trình tiếp tuyến với ( C1 ) biết tiếp tuyến vuông góc với 
đường thẳng có phương trình .
Câu II ( 3,0 điểm )
1.Giải bất phương trình: 
2.Tính tích phân 
3.Cho hàm số y= có đồ thị là ( C ) .Tính thể tích vật thể tròn xoay do hình phẳng giới hạn bởi ( C ) và các đường thẳng y=0,x=0,x=3 quay quanh 0x.
Câu III ( 1,0 điểm ) 
Cho hình vuông ABCD cạnh a.SA vuông góc với mặt phẳng ABCD,SA= 2a.
a.Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABCD
b.Vẽ AH vuông góc SC.Chứng minh năm điểm H,A,B,C,D nằm trên một mặt cầu.
II . PHẦN RIÊNG ( 3 điểm )
1.Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) 
Cho D(-3;1;2) và mặt phẳng () qua ba điểm A(1;0;11), B(0;1;10), C(1;1;8).
1.Viết phương trình tham số của đường thẳng AC
2.Viết phương trình tổng quát của mặt phẳng ()
3.Viết phương trình mặt cầu tâm D bán kính R= 5.Chứng minh mặt cầu này cắt ()
Câu V.a ( 1,0 điểm ) 
Xác định tập hợp các điểm biểu diển số phức Z trên mặt phẳng tọa độ thỏa mãn điều kiện :
2.Theo chương trình nâng cao
Câu IVb/.
Cho A(1,1,1) ,B(1,2,1);C(1,1,2);D(2,2,1)
a.Tính thể tích tứ diện ABCD
b.Viết phương trình đường thẳng vuông góc chung của AB và CB
c.Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD.
Câu Vb/.
a/.Giải hệ phương trình sau: b/.Miền (B) giới hạn bởi đồ thị (C) của hàm số và hai trục tọa độ.1).Tính diện tích của miền (B).2). Tính thể tích khối tròn xoay sinh ra khi quay (B) quanh trục Ox, trục Oy.
 ĐỀ SỐ 11.
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm )
Câu I ( 3,0 điểm ) 
Cho hàm số y = x3 + 3x2 + mx + m – 2 . m là tham số
1.Tìm m để hàm số có cực đại và cực tiểu
2.Khảo sát và vẽ đồ thị hàm số khi m = 3.
Câu II ( 3,0 điểm )
1.Tính diện tích hình phẳng giới hạn bởi đồ thị các hàm số y = ex ,y = 2 và đường thẳng x = 1.
2.Tính tích phân 
3.Giải bất phương trình log(x2 – x -2 ) < 2log(3-x)
Câu III ( 1,0 điểm )
Cho hình nón có bán kính đáy là R,đỉnh S .Góc tạo bởi đường cao và đường sinh là 600.
1.Hãy tính diện tích thiết diện cắt hình nón theo hai đường sinh vuông góc nhau.
2.Tính diện tích xung quanh của mặt nón và thể tích của khối nón.
II . PHẦN RIÊNG ( 3 điểm )
1.Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) :
Trong không gian với hệ tọa độ Oxyz cho ba điểm :A(1;0;-1); B(1;2;1); C(0;2;0). Gọi G là trọng tâm của tam giác ABC
1.Viết phương trình đường thẳng OG
2.Viết phương trình mặt cầu ( S) đi qua bốn điểm O,A,B,C.
3.Viết phương trình các mặt phẳng vuông góc với đường thẳng OG và tiếp xúc với mặt cầu ( S).
Câu V.a ( 1,0 điểm )
Tìm hai số phức biết tổng của chúng bằng 2 và tích của chúng bằng 3
2.Theo chương trình nâng cao
Câu IVb/.
Trong không gian với hệ trục tọa độ Oxyz cho bốn điểm A, B, C, D với A(1;2;2), B(-1;2;-1), .
1.Chứng minh rằng ABCD là hình tứ diện và có các cặp cạnh đối bằng nhau.
2.Tính khoảng cách giữa hai đường thẳng AB và CD.
3.Viết phương trình mặt cầu (S) ngoại tiếp hình tứ diện ABCD.
Câu Vb/.
Cho hàm số: (C)
1.Khảo sát hàm số
2.Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến vuông góc với đường thẳng 
ĐỀ SỐ 12.
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm )
Câu I ( 3,0 điểm )
Cho hàm số số y = - x3 + 3x2 – 2, gọi đồ thị hàm số là ( C)
1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số
2.Viết phương trình tiếp tuyến với đồ thị ( C) tại điểm có hoà

File đính kèm:

  • docTai lieu luyen thi tot nghiep 2009 Day du.doc