Thiết kế bài giảng Đại số 7 - Bài 4: Đơn thức đồng dạng - Bùi Thị Hải Hưng
I) Đơn thức đồng dạng
Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến.
Cộng, trừ các đơn thức đồng dạng
Vậy để cộng hai đơn thức đồng dạng ta làm như thế nào?
các đơn thức đồng dạng ta làm như thế nào?
CHÀO MỪNG THẦY CÔ VỀ DỰ HỘI THIGIÁO VIÊN THỰC HIỆNPhßng gi¸o dơc huyƯn ®«ng triỊuTrêng THCS M¹o Khª I Bùi Thị Hải Hưng1) Thế nào là đơn thức; đơn thức thu gọn? Bậc của của đơn thức có hệ số khác 0 là gì? KIỂM TRA BÀI CŨTrả lời: * Đơn thức là biểu thức đại số chỉ gồm một số, hoặc một biến, hoặc một tích giữa các số và các biến.* Đơn thức thu gọn là đơn thức chỉ gồm tích của một số với các biến, mà mỗi biến đã được nâng lên lũy thừa với số mũ nguyên dương. * Bậc của đơn thức có hệ số khác 0 là tổng số mũ của tất cả các biến có trong đơn thức. C©u 2 : Thu gän c¸c ®¬n thøc sau, chØ râ phÇn hƯ sè, phÇn biÕn cđa ®¬n thøc thu gän?x3y= 2x3y2= -5x3y2x3y2Thảo luận nhóm nhỏCho đơn thức 3x2yz.a) Hãy viết hai đơn thức có phần biến giống phần biến của đơn thức đã cho.b) Hãy viết hai đơn thức có phần biến khác phần biến của đơn thức đã cho.ChØ ra c¸c ®¬n thøc cã phÇn biÕn gièng nhau.C¸c cỈp ®¬n thøc ®ång d¹ngĐƠN THỨC ĐỒNG DẠNGI) Đơn thức đồng dạng Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến. Chú ý: Các số khác 0 được coi là những đơn thức đồng dạng. Hãy lấy ví dụ về hai đơn thức đồng dạng? Ba số -2; và 0,5 là những đơn thức đồng dạng.Ba đơn thức -2x0; ;0,5x0 cĩ đồng dạng với nhau khơng?Ai đúng? Khi thảo luận nhóm, bạn Sơn nói:“0,9xy2 và 0,9x2y là hai đơn thức đồng dạng”Bạn Phúc nói: ”Hai đơn thức trên không đồng dạng”. Ý kiến của em? ?Phúc nói đúng!Hai đơn thức này không đồng dạng.I) Đơn thức đồng dạng Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến. Chú ý: Các số khác 0 được coi là những đơn thức đồng dạng Hai đơn thức sau đồng dạng. Đúng hay sai?a) 0,9xy2 và 0,9x2yb) 9xy2 và 12y2xc) 0.x3y2 và -5.x3y2 d) 2xyzx2 và -3x3yz SĐSĐ(Vì thu gọn đơn thức thứ nhất ta được 2x3yz) ?ĐƠN THỨC ĐỒNG DẠNGĐƠN THỨC ĐỒNG DẠNGI) Đơn thức đồng dạng Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến.Bài tập 15. (trang 34) Xếp các đơn thức sau thành từng nhóm các đơn thức đồng dạng:x2y; x2y; x2y; x2y; xy2; -2 xy2; xy2;xyNhóm 1:Nhóm 2:BT15* Có hai nhóm đơn thức đồng dạng:x2y. xy2.I) Đơn thức đồng dạng Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến.II) Cộng, trừ các đơn thức đồng dạngCho A=3.72.55 và B=72.55 dựa vào tính chất phân phối của phép nhân đối với phép cộng để tính A+B.A+B= 3.72.55 + 72.55 A+B= 3.72.55 + 1. 72.55= (3+1).72.55= 4.72.553x2y+ x2yTương tự hãy cộng hai đơn thức:3x2y+1. x2y=(3+1). x2y= 4. x2y1)Ví dụ 1:Vậy để cộng hai đơn thức đồng dạng ta làm như thế nào?Để cộng hai đơn thức đồng dạng, ta cộng các hệ số với nhau và giữ nguyên phần biến. Tương tự ví dụ 1, hãy trừ hai đơn thức4xy2-6xy24xy2-6xy2=(4-6)xy2=-2xy24xy2-6xy2= (4 -6) xy2= -2 xy22)Ví dụ 2:Vậy để trừ hai đơn thức đồng dạng ta làm như thế nào?Để trừ hai đơn thức đồng dạng, ta trừ các hệ số với nhau và giữ nguyên phần biến. Để cộng (hay trừ) các đơn thức đồng dạng ta làm như thế nào?Để cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến. 3) Quy tắcĐƠN THỨC ĐỒNG DẠNGTỉng HiƯu Giữ nguyên phần biếnCéng c¸c hƯ sè víi nhauTrõ c¸c hƯ sè víi nhauQuy t¾cI) Đơn thức đồng dạngII) Cộng, trừ các đơn thức đồng dạng1)Ví dụ 1Để cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến. 2)Ví dụ 23) Quy tắc4) Vận dụngTính. a) -x2yz+ (-3 x2yz) + 7 x2yz b) 4a2_ 8a2 _ 3a2 = (-1-3+ 7) x2yz = 3 x2yz = (4-8-3) a2 = -7 a2 c) Tổng của ba đơn thức xy3; 5xy3 và -7xy3Là xy3+ 5xy3 + (-7xy3)= - xy3ĐƠN THỨC ĐỒNG DẠNG3x2y+ x2y= (3+1) x2y= 4 x2y4xy2-6xy2= (4 -6) xy2= -2 xy2Viết gọn xy3+ 5xy3 -7xy3= - xy3I) Đơn thức đồng dạngII) Cộng, trừ các đơn thức đồng dạng1)Ví dụ 1Để cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến. 2)Ví dụ 23) Quy tắc4) Vận dụngTính. a) -x2yz+ (-3 x2yz) + 7 x2yz b) 4a2_ 8a2 _3a2 = (-1-3+ 7) x2yz = 3 x2yz = (4-8-3)a2 = -7 a2 c) xy3+ 5xy3 + (-7xy3)= - xy3ĐƠN THỨC ĐỒNG DẠNG3x2y+ x2y= (3+1) x2y= 4 x2y4xy2-6xy2= (4 -6) xy2= -2 xy2I) Đơn thức đồng dạngII) Cộng, trừ các đơn thức đồng dạngĐể cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến. Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến.BT17* Tính giá trị của biểu thức sau tại x=1 và y= -1- x5yx5y+ x5y( +1)x5y == x5yThay x=1 và y= -1 vào biểu thức trên ta được .15.(-1) =ĐƠN THỨC ĐỒNG DẠNGAi nhanh hơn?Hai tổ, mỗi tổ 3 học sinh. Tổ trưởng viết một đơn thức bậc 5 có hai biến trên bảng. Chạy xuống, hai thành viên còn lại đồng thời chạy lên, viết mỗi người một đơn thức đồng dạng với đơn thức mà tổ trưởng đã viết lên bảng (các đơn thức không được viết giống nhau). Sau khi các thành viên viết xong, tổ trưởng tính tổng của tất cả các đơn thức của tổ mình trên bảng. Tổ nào viết đúng và nhanh nhất thì tổ đó giành chiến thắng.Bµi tËp 1: Chän c©u ®ĩng trong c¸c c©u sau:A. 5x2y-(-2x2y) = 7x2yC. 2x2z + 3xz2 = 5x2z Củng cố:Để cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến. Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến.B. 2x2.3x2 = 6x2L£V¡nH¦u12456783=6xy2=0=3xy= -12x2yHƯỚNG DẪN VỀ NHÀHiểu thế nào là các đơn thức đồng dạng.Nắm vững và vận dụng tốt quy tắc cộng (trừ) các đơn thức đồng dạng.Làm các bài tập từ 18-23 trang 35-36 SGK
File đính kèm:
- Tiet_54Don_thuc_dong_dang.ppt