Tuyển tập các đề thi Đại học cao đẳng phần Hình học không gian

Bi 1) ĐHCĐ 2005 B

1) Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm A(2;0) và B(6;4). Viết phương trình đường tròn (C) tiếp xúc với trục hoành tại điểm A và khoảng cách từ tâm của (C) đến điểm B bằng 5.

2) Trong không gian với hệ tọa độ Oxyz cho hình lăng trụ đứng ABC.A1B1C1 với A(0;-3;0), B(4;0;0), C(0;3;0), B1(4;0;4).

a) Tìm tọa độ các đỉnh A1, C1. Viết phương trình mặt cầu có tâm là A và tiếp xúc với mặt phẳng (BCC1B1).

b) Gọi M là trung điểm của A1B1. Viết phương trình mặt phẳng (P) đi qua hai điểm A, M và song song với BC. Mặt phẳng (P) cắt đường thẳng A1C1 tại điểm N. Tính độ dài MN.

 

doc5 trang | Chia sẻ: tuanbinh | Lượt xem: 893 | Lượt tải: 0download
Bạn đang xem nội dung Tuyển tập các đề thi Đại học cao đẳng phần Hình học không gian, để tải tài liệu về máy bạn hãy click vào nút TẢI VỀ
ĐHCĐ 2002 K.A
Trong không gian với hệ tọa độ Đêcac vuông góc Oxyz cho hai đường thẳng:
Ỵ1 : 	và 	Ỵ2 : 
a) Viết phương trình mặt phẳng (P) chứa đường thẳng Ỵ1 và song song với đường thằng Ỵ2
b) cho điểm M(2 ; 1,4). Tìm tọa độ điểm H thuộc đường thẳng Ỵ2 sao cho đoạn thẳng MH có độ dài nhỏ nhất.
ĐHCĐ 2002 K.B
Trong mặt phẳng tọa độ Đêcac vuông góc Oxy cho hình chữ nhật ABCD có tâm , phương trình đường thẳng AB là x – 2y + 2 = 0 và AB = 2AD. Tìm tọa độ các đỉnh A,B,C,D biết rằng A có hoành độ âm.
Cho hình lập phương ABCDA1B1C1D1 có cạnh bằng a.
Tính theo a khoảng cách giữa hai đường thẳng A1B và B1D.
Gọi M,N,P lần lượt là các trung điểm của các cạn h BB1, CD, A1D1. Tính góc giữa hai đường thẳng MP, C1N.
ĐHCĐ 2002 K.D
Cho hình tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (ABC) ; AC = AD = 4cm; AB = 3cm; BC = 5cm. Tính khoảng cách từ điểm A tới mặt phẳng (BCD).
Trong không gian với hệ tọa độ Đêcac vuông góc Oxyz cho mặt phẳng (P) : 2x – y + 2 = 0
Và đường thẳng dm : ( m là tham số ).
Xác định m để đường thẳng dm song song với mặt phẳng (P).
ĐHCĐ 2003 K.A
Cho hình lập phương ABCD.A’B’C’D’. Tính số đo của góc phẳng nhị diện [B,A’C,D].
Trong không gian với hệ trục tọa độ Đêcac vuông góc Oxyz cho hình hộp chữ nhật ABCD.A’B’C’D’ có A trùnh với gốc của hệ tọa độ, B(a; 0; 0) , D(0; a; 0), A’(0; 0; b) (a>0, b>0). Gọi M là trung điểm cạnh CC’.
tính thể tích khối tứ diện BDA’M theo a và b.
Xác định tỷ số để hai mặt phẳng (A’BD) và (MBD) vuông góc với nhau.
 ĐHCĐ 2003 K.B
Trong mặt phẳng với hệ tọa độ Đêcac vuông góc Oxyz cho tam giác ABC có AB = AC , 900. Biết M(1; -1) là trung điểm cạnh BC và G là trọng tâm tam giác ABC. Tìm tọa độ các đỉnh A, B, C.
Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy ABCD là một hình thoi cạnh a, góc= 600. Gọi M là trung điểm cạnh AA’ và N là trung điểm cạnh CC’. Chứng minh rằng bốn điểm B’, M, D, N cùng thuộc một mặt phẳng. Hãy tính độ dài canh AA’ theo a để tứ giác B’MDN là hình vuông.
Trong không gian với hệ tọa độ Đêcac vuông góc Oxyz cho hai điểm A(2; 0; 0), B(0;0;8) và điểm C sao cho =(0; 6; 0). Tính khoảng cách từ trung điểm I của BC đến đường thẳng OA.
ĐHCĐ 2003 K.D
Trong mặt phẳng tọa độ Đêcac vuông góc Oxyz cho đường tròn
(C) : (x – 1)2 + (y – 2)2 = 4 và đường thẳng d : x – y – 1 = 0
Viết phương trình đường tròn (C’) đối xứng với đường tròn (C) qua đường thẳng d.
Tìm tọa độ các giao điểm của (C) và (C’).
Trong không gian với hệ tọa độ Đêcac vuông góc Oxyz cho đường thẳng :
 dk : tìm k để đường thẳng dk vuông góc với mặt phẳng (P) : x – y – 2z +5 = 0.
Cho hai mặt phẳng (P) và (Q) vuông góc với nhau, có giao tuyến là đường thẳng ª. Trên ª lấy hai điểm A, B với AB = a . trong mặt phẳng (P) điểm C , trong mặt phẳng (Q) lấy điểm D sao cho AC, BD vuông góc với ª và AC = BD = AB. Tính bán kính mặt cầu ngoại tiếp tứ diện ABCD và tính khoảng cách từ A đến mặt phẳng (BCD) theo a.
ĐHCĐ 2004 K.A
Trong mặt phẳng tọa độ Oxy cho hai điểm A (0; 2) và B(; ). Tìm tọa độ trực tâm và tọa độ tâm đường tròn ngoại tiếp của tam giác OAB.
Trong không gian với hệ tọa độ Đêcac Oxyz cho hình chóp S.ABCD có đáy ABCD là hình thoi, AC cắt BD tạo gốc tọa độ O. Biết A(2; 0; 0), B (0; 1; 0), S(0; 0; ). Gọi M là trung điểm cạnh SC.
Tính góc và khoảng cách giữa hai đưởng thẳng SA, BM.
Giả sử mặt phẳng (ABM) cắt đường thẳng SD tại điểm N. Tính thể tích khối hình chóp A.ABMN
 ĐHCĐ 2004 K.B
trong mặt phẳng toạ độ Oxy cho hai điểm A(1; 1), B(4; -3). Tìm điểm C thuộc đường thằng x – 2y – 1 = 0 sao cho khoảng cách từ C đến AB bằng 6.
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng (00 < < 900). Tính tang của góc giữa hai mặt phẳng (SAB) và (ABCD) theo . Tính thể tích khối chóp S.ABCD theo a và .
Trong không gian với hệ toạ độ Oxyz cho điểm A(-4; -2; 4) và đường thẳng d : Viết phương trình đường thẳng ª đi qua điểm A, cắt và vuông góc với đường thẳng d.
ĐHCĐ 2004 K.D
trong mặt phẳng với hệ toạ độ Oxy cho tam giác ABC có các đỉnh A(-1; 0); B (4; 0); C(0;m) với m 0. tìm toạ độ trọng tâm G của tam giác ABC theo m. xác định m để tam giác GAB vuông tại G.
Trong không gian với hệ toạ độ Oxyz cho hình lăng trụ đứng ABC.A1B1C1. Biết A(a; 0; 0), B(-a; 0; 0), C(0; 1; 0), B1(-a; 0; b), a > 0, b > 0.
Tình khoảng cách giữa hai đường thẳng B1C và AC1 theo a, b.
Cho a, b thay đổi nhưng luôn thoả mãn a + b = 4. Tìm a,b để khoảng cách giữa hai đường thẳng B1C và AC1 lớn nhất.
Trong không gian với hệ toạ độ Oxyz cho ba điểm A(2;0;1), B(1;0;0), C(1;1;1) và mặt phẳng (P) : x + y + z – 2 = 0. Viết phương trình mặt cầu đi qua ba điểm A, B, C và có tâm thuộc mặt phẳng (P).
ĐHCĐ 2005 K.A
trong mặt phẳng với hệ toạ độ Oxy cho 2 đường thẳng 
 	d1 : x – y = 0 và d2 : 2x + y – 1 = 0
tìm toạ độ các đỉnh hình vuông ABCD biết rằng đỉng A thuộc d1 , C thuộc d2 và các đỉnh B, D thuộc trục hoành.
Trong không gian với hệ trục Oxyz cho đường thẳng d : và mặt phẳng (P) : 2x + y – 2z + 9 = 0.
tìm toạ độ điểm I sao cho khoảng cánh từ I đến mặt phẳng (P) bằng 2.
Tìm tọa độ giao điểm A của đường thẳng d và mặt phẳng (P). Viết phương trình tham số của đường thẳng ª nằm trong mặt phẳng (P), biết ª đi qua A và vuông góc góc với d.
ĐHCĐ 2005 B
Trong mặt phẳng với hệ tọa độ Oxy cho hai điểm A(2;0) và B(6;4). Viết phương trình đường tròn (C) tiếp xúc với trục hoành tại điểm A và khoảng cách từ tâm của (C) đến điểm B bằng 5.
Trong không gian với hệ tọa độ Oxyz cho hình lăng trụ đứng ABC.A1B1C1 với A(0;-3;0), B(4;0;0), C(0;3;0), B1(4;0;4).
a) Tìm tọa độ các đỉnh A1, C1. Viết phương trình mặt cầu có tâm là A và tiếp xúc với mặt phẳng (BCC1B1).
b) Gọi M là trung điểm của A1B1. Viết phương trình mặt phẳng (P) đi qua hai điểm A, M và song song với BC. Mặt phẳng (P) cắt đường thẳng A1C1 tại điểm N. Tính độ dài MN.
ĐHCĐ 2005 D
Trong mặt phẳng tọa độ Oxy cho điểm C(2;0) và elíp (E) : . Tìm tọa độ các điểm A, B thuộc (E), biết rằng hai điểm A,B đối xứng với nhau qua trục hoành và tam giác ABC là tam giá đều.
Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng
d1 : và d2 : 
chứng minh rằng d1 , d2 song song với nhau. Viết phương trình mặt phẳng (P) chứa cả hai đường thẳng d1 và d2.
Mặt phẳng tọa độ Oxz cắt hai đường thẳng d1, d2 lần lượt tại các điểm A,B. Tính diện tích tam giác OAB ( O là gốc tọa độ).
 ĐHCĐ 2006 A
Trong không gian với hệ tọa độ Oxyz, cho hình lập phương ABCD.A’B’C’D’ với A(0;0;0), B(1;0;0), D(0;1;0) , A’(0;0;1). Gọi M và N lần lượt là trung điểm của AB và CD.
Tính khoảng cách giữa hai đường thẳng A’C và MN.
Viết phương trìng mặt phẳng A’C và tạo với mặt phẳng Oxy một góc biết cos=.
ĐHCĐ 2006 A
Trong không gian với hệ tọa độ Oxyz, cho điểm A(0;1;2) và hai đường thẳng :
	d1 : , d2 : 
Viết phương trình đường thẳng (P) qua A, đồng thời song song với d1 và d2.
Tìm tọa độ các điểm M thuộc d1, N thuộc d2 sao cho ba điểm A, M, N thẳng hàng.
ĐHCĐ 2006 D
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;3) và hai đường thẳng:
d1 : , d2 : 
Tìm tọa độ điểm A’ đối xứng với điểm A qua đường thẳng d1.
Viết phương trình đường thẳng ª đi qua A, vuông góc với d1 và cắt d2.
ĐHCĐ 2007 A
Trong không gian với hệ toạ độ Oyxz, cho hai đường thẳng
d1: 	và 	d2: 
Chứng minh rằng d1 và d2 chéo nhau.
Viết phương trình đường thẳng d vuông góc với mặt phẳng (P): 7x + y – 4z = 0 và cắt hai đường thẳng d1, d2.
ĐHCĐ 2007 B
Trong không gian với hệ toạ độ Oxyz, cho mặt cầu (S): x2 + y2 + z2 – 2x + 4y + 2z – 3 = 0 và mặt phẳng (P): 2x – y + 2z – 14 = 0.
Viết phương trình mặt phẳng (Q) chứa trục Ox và cắt (S) theo một đường tròn có bán kính bằng 3.
Tìm toạ độ điểm M thuộc mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) lớn nhất.
ĐHCĐ 2007 D
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A( 1;4;2) , B(-1;2;4) và đường thẳng
d : .
Viết phương trình đường thẳng d đi qua trọng tâm G của tam giác OAB và vuông góc với mặt phẳng (OAB).
Tìm tọa độ điểm M thuộc đường thẳng d sao cho MA2 + MB2 nhỏ nhất.
ĐHCĐ 2008 A
Trong không gian với hê tọa độ Oxyz, cho điểm A(2;5;3) và đường thẳng
d : .
1) Tìm tọa độ hình chiều vuông góc của điểm A trên đường thẳng d.
2) Viết phương trình mặt phẳng () lớn nhất.
ĐHCĐ 2008 B
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;1;2), B(2;-2;1), 
C(-2;0;1)
Viết phương trình mặt phẳng đi qua ba điểm A, B, C.
Tìm tọa độ của điểm M thuộc mặt phẳng 2x + 2y + z – 3 = 0 sao cho MA = MB = MC
ĐHCĐ 2008 D
Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(3;3;0), B(3;0;3), C(0;3;3), D(3;3;3)
Viết phương trình mặt cầu đi qua bốn điểm A,B,C,D
Tìm tọa độ tâm đường trón ngoại tiếp tam giác ABC.

File đính kèm:

  • docTuyen_tap_cac_de_thi_DHCD_HHKG.doc
Bài giảng liên quan