Tuyển tập Đề thi thử Đại học có đáp án môn Toán - Đề số 191
Câu VIIa. (1điểm). Trong mặt phẳng toạ độ Oxy. Ở góc phần tư thứ nhất ta lấy 2 điểm phân biệt, cứ thế ở cácgóc phần tư thứ hai, thứ ba, thứ tư ta lần lượt lấy 3, 4, 5 điểm phân biệt (các điểm không nằm trên các trục toạđộ). Trong 14 điểm đó ta lấy 2 điểm bất kỳ. Tính xác suất để đoạn thẳng nối hai điểm đó cắt cả hai trục toạ độ.
SỞ GD VÀ ĐT NGHỆ AN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG LẦN I NĂM 2012 TRƯỜNG THPT ĐÔ LƯƠNG 4 Môn: Toán khối A, B Thời gian:180 phút không kể thời gian giao đề. I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I. (2điểm) Cho hàm số ( )3 23 1 12 3 4y x m x mx m= − + + − + (C) 1. Khảo sát và vẽ đồ thị hàm số khi m = 0. 2. Tìm m để hàm số có hai cực trị là A và B sao cho hai điểm này cùng với điểm 91; 2 C − − lập thành tam giác nhận gốc tọa độ O làm trọng tâm. Câu II. (2điểm) 1. Giải phương trình: ( ) 3cos 1 2 3 sin 2 cos3 4cos 22x x x xpi + = − − . 2. Giải hệ phương trình. ( ) ( ) 2 23 8 5 8 3 13 x y y x x x y y + + + = + + + = Câu III. (1điểm) Tính tích phân: 24 2 3 sin 1 cos cos x xI dx x pi pi − − = ∫ Câu IV. (1điểm) Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và D. Biết AB = 2a, AD =a, DC = a (a > 0) và SA ⊥ mặt phẳng đáy (ABCD). Góc tạo bởi giữa mặt phẳng (SBC) với đáy bằng 450. Tính thể tích khối chóp S.ABCD và khoảng cách từ B tới mặt phẳng (SCD) theo a. Câu V. (1điểm) Cho các số dương a, b, c thoả mãn điều kiện 2 2 2 4a b c abc+ + + = . Chứng minh rằng 3a b c+ + ≤ . II. PHẦN RIÊNG. (3điểm) Thí sinh chỉ được làm một trong hai phần. 1. Theo chương trình chuẩn. Câu VIa. (2điểm). 1. Trong mặt phẳng Oxy cho hình vuông ABCD có tâm 3 1; 2 2 I . Các đường thẳng AB, CD lần lượt đi qua các điểm ( )4; 1M − − , ( )2; 4N − − . Tìm toạ độ các đỉnh của hình vuông đó biết B có hoành độ âm. 2. Tìm m để phương trình sau có nghiệm thực: ( )29 2 4 2 2x m x x+ − = − + + Câu VIIa. (1điểm). Trong mặt phẳng toạ độ Oxy. Ở góc phần tư thứ nhất ta lấy 2 điểm phân biệt, cứ thế ở các góc phần tư thứ hai, thứ ba, thứ tư ta lần lượt lấy 3, 4, 5 điểm phân biệt (các điểm không nằm trên các trục toạ độ). Trong 14 điểm đó ta lấy 2 điểm bất kỳ. Tính xác suất để đoạn thẳng nối hai điểm đó cắt cả hai trục toạ độ. 2. Theo chương trình nâng cao. Câu VIb. (2điểm). 1. Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, tâm I thuộc đường thẳng ( ) : 3 0d x y− − = và có hoành độ 9 2I x = , trung điểm của một cạnh là giao điểm của (d) và trục Ox. Tìm tọa độ các đỉnh của hình chữ nhật. 2. Trong không gian Oxyz cho đường thẳng 1 1: 1 2 1 x y zd − += = − và hai điểm ( ) ( )1;1; 2 , 1;0;2 .A B− − a. Viết phương trình mặt phẳng (P) chứa A và B đồng thời song song với đường thẳng d. b. Qua A viết phương trình đường thẳng ( )∆ vuông góc với d sao cho khoảng cách từ B tới ( )∆ là nhỏ nhất. Câu VIIb. (1điểm). Cho hai số phức liên hợp nhau 1 2,z z thoả mãn điều kiện 12 2 z z là một số thực và 1 2 2 3z z− = . Tìm số phức z1. ............................. Hết ............................ hotgirld@gmail.com sent to www.laisac.page.tl ĐÁP ÁN TOÁN LẦN 1 CÂU NỘI DUNG ĐIỂM Với 0m = ta có hàm số 3 23 4y x x= − + * TXĐ: D = ℝ * Sự biến thiên. 2' 3 6y x x= − , nên ' 0 0y x= ↔ = hoặc 2x = 0,25 - Hàm số đồng biến trên các khoảng ( );0−∞∞ và ( )2;+∞ , nghịch biến trên ( )0;2 - Cực trị. Cực đại ( )0;4 ; cực tiểu ( )2;0 - Giới hạn. lim , lim x x y y →−∞ →+∞ = −∞ = +∞ 0,25 - Bảng biến thiên. x −∞ 0 2 +∞ y’ + 0 - 0 + y 4 +∞ −∞ 0 0,25 1 * Đồ thị. y Giao với Ox: ( ) ( )1;0 ; 2;0− 4 Giao với Oy: ( )0;4 Các điểm khác ( ) ( )1;2 ; 3;4 -1 x 2 0,25 Ta có ( )2' 3 3 1 12y x m x m= − + + . Hàm số có hai cực trị khi y’ đổi dấu hai lần, khi đó y’ = 0 có hai nghiệm phân biệt nên ( )21 0 1m m∆ = − > ↔ ≠ 0,25 Khi đó hai cực trị là ( ) ( )3 22;9 , 2 ; 4 12 3 4A m B m m m m− + − + 0,25 Theo bài ra ta có. 3 2 2 2 1 0 1 9 24 12 6 4 0 2 m m m m m + − = ↔ = − − + + + − = thỏa mãn 0,25 I. 2 Khi đó dễ thấy A, B, C là tam giác nhận O làm trọng tâm 0,25 PT cos 2 3 sin 2 cos cos3 4sin 2x x x x x↔ + = + ( ) 2sin 2 sin 3 cos 2 0 2 6 k x x x x x k pi pi pi = ↔ + − = ↔ = + 0,5 II. 1. Vậy phương trình có các nghiệm. , 2 2 6 k x x kpi pi pi= = + 0,25 ĐK của hệ: 2 2 3 0 8 0 x y y x + ≥ + ≥ đặt ( )2 23 , 8 0, 0a x y b y x a b= + = + ≥ ≥ Khi đó ta có hệ. 2 2 5 3 413 a b a ba b + = = ↔ =+ = hoặc 4 3 a b = = 0,25 Với 4 3 a b = = ta có. ( )22 2 4 2 1 43 4 3 8 9 8 72 65 0 y xx y y x x x x = −+ = ↔ + = − + − = ( ) ( )( ) ( ) 2 2 1 4 3 1 5 4 13 0 y x x x x x = − ↔ − + − + = 0,25 hệ có hai nghiệm. ( ) ( ); 1;1x y = và ( ) ( ); 5; 7x y = − − 0,25 2. Với ( )22 2 4 2 1 93 9 3 8 4 18 72 45 0 y xx y y x x x x = −+ = ↔ + = − + − = ( ) ( ) ( ) ( ) 2 2 2 22 2 2 2 1 19 9 3 3 9 36 72 36 0 9 36 72 36 0 y x y x x x x x x x = − = − ↔ ↔ + − + − = + − + − = ( ) ( ) ( ) ( )2 2 2 22 1 19 9 03 3 9 6 6 0 3 6, 3 6 y x y x x x x x = − = − = ↔ ↔ + − − = = − + = − − Vậy hệ có 4 nghiệm ( ) ( ); 1;1x y = , ( ) ( ); 5; 7x y = − − , ( ) ( ); 3 6;2 6 2x y = − + − và ( ) ( ); 3 6;2 6 2x y = − − + 0.25 * Ta có 4 4 2 2 2 3 3 sin sin1 cos sin cos cos x xI xdx x dx x x pi pi pi pi − − = − =∫ ∫ 0,25 = 0 4 2 2 0 3 sin sin sin sin cos cos x x x dx x dx x x pi pi − − = +∫ ∫ 0,25 = 0 02 24 4 2 2 2 2 0 0 3 3 sin sin 1 11 1 cos cos cos cos x xdx dx dx dx x x x x pi pi pi pi − − − + = − + − ∫ ∫ ∫ ∫ 0,25 III. = ( ) ( )0 4 0 3 7 tan tan 3 1 12 x x x x pi pi pi − − + − = − − 0,25 s * Ta có 2AC a= nên tam giác ACD vuông tại C → góc 045SCA∠ = do đó 2SA a= - . 1 . 3S ABCD ABCD V S SA= trong đó ( ) 21 3 2 2ABCD aS AB DC AD= + = Vậy 2 3 . 1 3 22 3 2 2S ABCD a aV a= = A B D C 0,5 * Ta có ( )( ) ( )( ) . . 31 ; ; 3 S DCB S DCB BCD BCD VV S d B SCD d B SCD S = ↔ = 0,25 IV Trong đó 3 . 1 1 1 2 . . sin . 3 3 2 6S BCD BCD aV S SA CB CD C SA= = = Vậy ( )( ) 3. 23 2 6; 33S DCBBCD V a ad B SCD S a = = = 0,25 Giả sử ( ) ( )1 1 0 1a b a b ab− − ≥ ↔ + ≤ + khi đó ta chỉ cần chứng minh 2 2c ab c ab≤ − ↔ + ≤ 0,25 Theo giả thiết. 2 2 2 2 24 2 4 2a b c abc ab c abc ab c abc= + + + ≥ + + ↔ ≥ + + 0,25 ( )( )2 2 0 2 0c ab c ab c↔ + + − ≤ ↔ + − ≤ đpcm Dấu bằng khi 1a b c= = = . 0,25 V. Trong trường hợp ngược lại thì ( )( )1 1 0b c− − ≥ hoặc ( ) ( )1 1 0c a− − ≥ và làm tương tự 0,25 PHẦN RIÊNG 1. Theo chương trình chuẩn Gọi ( )' 7;2M và ( )' 5;5N là điểm đối xứng với M, N qua I . ta có 'N AB∈ và 'M CD∈ Nên đường thẳng AB có phương trình 2 3 5 0x y− + = 0,25 Gọi H là hình chiếu vuông góc của I lên AB 1 ;2 2 H → 0,25 Gọi ( );A a b khi đó ta có ( ) 2 2 2 3 5 2 1 13 32 2 4 a b A AB a HA HI ba b − = − ∈ = ↔ ↔ = = − + − = hay ( )2;3A khi đó ( )1;1B − 0,25 1. Bằng cách đối xứng A, B qua I ta có được ( ) ( )1; 2 , 4;0C D− 0,25 Điều kiện. 2 2x− ≤ ≤ Đặt 2 2t x x= − + + khi đó ta có 2 2 2t≤ ≤ 0,25 Bài toán quy về tìm m để phương trình 2 5t mt+ = trên 2;2 2 0,25 VIa. 2. Bằng việc xét hàm số ( ) 2 5xf x x + = trên đoạn 2;2 2 0,25 Ta có kết quả 13 22 5 4 m≤ ≤ 0,25 Để đoạn thẳng nối hai điểm được chon cắt cả hai trục thì hai đầu đoạn thăng đó phải ở góc phần tư thứ nhất và thứ ba hoặc phần tư thứ hai và thứ bốn 0,25 Do vậy số cách chọn được số đoạn thẳng như vậy là 1 1 1 12 4 3 5 23C C C C+ = cách 0,25 Số cách chọn hai điểm bất kỳ 214 91C = 0,25 VIIa. Vậy xác suất xẩy ra ở đề bài là: 23 91 0,25 2. Theo chương trình nâng cao I có hoành độ 9 2I x = và ( ) 9 3: 3 0 ; 2 2 I d x y I ∈ − − = ⇒ Vai trò A, B, C, D là như nhau nên trung điểm M của cạnh AD là giao điểm của (d) và Ox, suy ra M(3;0) ( ) ( )2 2 9 92 2 2 3 2 4 4I M I M AB IM x x y y= = − + − = + = D 12 . D = 12 AD = 2 2. 3 2 ABCD ABC SS AB A AB = ⇔ = = ( )AD d M AD ⊥ ∈ , suy ra phương trình AD: ( ) ( )1. 3 1. 0 0 3 0x y x y− + − = ⇔ + − = . Lại có MA = MD = 2 . 0,5 Vậy tọa độ A, D là nghiệm của hệ phương trình: ( ) ( ) ( ) ( )2 2 22 22 3 0 3 3 3 2 3 3 23 2 x y y x y x x y x xx y + − = = − + = − + ⇔ ⇔ − + = − + − = − + = 3 2 3 1 1 y x x x y = − = ⇔ ⇔ − = ± = hoặc 4 1 x y = = − .Vậy A(2;1), D(4;-1), 1 9 3 ; 2 2 I là trung điểm của AC, suy ra: 2 9 2 72 2 3 1 2 2 A C I C I A A C C I A I x x x x x x y y y y yy + = = − = − = ⇔ + = − = − = = Tương tự I cũng là trung điểm BD nên ta có: B(5;4). Vậy tọa độ các đỉnh của hình chữ nhật là (2;1), (5;4), (7;2), (4;-1). 0,5 a. 0,5 VIb. 2. b. Gọi (P) là mặt phẳng đi qua A và vuông góc với d, Gọi H là hình chiếu vuông góc của B lên (P) khi đó đường thẳng đi qua A và H thỏa mãn bài toán 0,5 Gọi 1z a bi= + ( ),a b ∈ℝ khi đó 2z a bi= − Từ điều kiện của bài toán ta lập hệ phương trình Tìm được. 1 1 3z i= ± + Hoặc 1 1 3z i= ± − . .. Hết .
File đính kèm:
- De&Da33AB_DoLuong4_NA.pdf