Tuyển tập Đề thi thử Đại học có đáp án môn Toán - Đề số 40

Câu VI.b (2,0 điểm)

1. Trong mặt phẳng với hệ trục toạ độ Oxy cho hình chữ nhật ABCD có diện tích bằng 12, tâm I là giao điểm của đường thẳng d1:x-y-3=0 và d2: x+y-6=0 . Trung điểm M của cạnh AD là giao điểm của d1 với trục Ox. Tìm toạ độ các đỉnh của hình chữ nhật

2. Trong không gian với hệ tọa độ Oxyz, Cho ba điểm A(0;1;2), B(2;-2;1), C(-2;0;1). Viết phương trình mặt phẳng (ABC) và tìm điểm M thuộc mặt phẳng 2x + 2y + z – 3 = 0 sao cho MA = MB = MC

doc5 trang | Chia sẻ: tuanbinh | Lượt xem: 908 | Lượt tải: 0download
Bạn đang xem nội dung Tuyển tập Đề thi thử Đại học có đáp án môn Toán - Đề số 40, để tải tài liệu về máy bạn hãy click vào nút TẢI VỀ
SỞ GD&ĐT HÀ TĨNH 
TRƯỜNG THPT ĐỨC THỌ
ĐỀ THI THỬ ĐẠI HỌC LẦN II
MÔN: TOÁN
Thời gian làm bài: 180 phút 
I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH(7điểm)
Câu I (2,0 điểm) Cho hàm số có đồ thị 
	1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi .
	 2. Xác định tham số m để hàm số có 3 cực trị tạo thành 3 đỉnh của một tam giác đều
Câu II (2,0 điểm) 
	1. Giải phương trình 
	2. Giải hệ phương trình sau trên R: 
Câu III (1,0 điểm) Tính tích phân 
Câu IV (1,0 điểm). Cho hình chóp có đáy là hình thang vuông tại và với là đáy nhỏ. Biết rằng tam giác là tam giác đều có cạnh với độ dài bằng và nằm trong mặt phẳng vuông góc với mặt đáy, và khoảng cách từ tới mặt phẳng bằng (ở đây là trung điểm ). Hãy tính thể tích khối chóp theo 
Câu V(1,0 điểm) Cho a, b, c là các số thực dương thay đổi thỏa mãn: .
Chứng minh rằng: 
PHẦN RIÊNG (3 điểm) Thí sinh chỉ chọn một trong hai phần (phần A hoặc phần B)
A. Theo chương trình chuẩn
Câu VI.a (2,0 điểm).
 1. Cho đường tròn (C) nội tiếp hình vuông ABCD có phương trình . Xác định toạ độ các đỉnh A, C của hình vuông, biết cạnh AB đi qua M(-3; -2) và xA > 0. 
 2. Trong không gian với hệ tọa độ Oxyz, hãy xác định toạ độ tâm và bán kính đường tròn ngoại tiếp tam giác ABC, biết A(-1; 0; 1), B(1; 2; -1), C(-1; 2; 3).
Câu VII.a (1,0 điểm) 
Tìm phần thực và phần ảo của số phức sau: z = 1 + (1 + i) + (1 + i)2 + (1 + i)3 +  + (1 + i)20
B. Theo chương trình nâng cao 
Câu VI.b (2,0 điểm)
1. Trong mặt phẳng với hệ trục toạ độ Oxy cho hình chữ nhật ABCD có diện tích bằng 12, tâm I là giao điểm của đường thẳng và . Trung điểm M của cạnh AD là giao điểm của d1 với trục Ox. Tìm toạ độ các đỉnh của hình chữ nhật
2. Trong không gian với hệ tọa độ Oxyz, Cho ba điểm A(0;1;2), B(2;-2;1), C(-2;0;1). Viết phương trình mặt phẳng (ABC) và tìm điểm M thuộc mặt phẳng 2x + 2y + z – 3 = 0 sao cho MA = MB = MC
 Câu VII.b (1,0 điểm
Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn hệ thức 
 giapcot@yahoo.com sent to www.laisac.page.tl
HƯỚNG DẪN CHẤM THI THỬ LẦN II NĂM HỌC 2010 – 2011
Câu
ý
Nội dung
Điểm
I
1
Với m= 3/2 ta có y = x4 -2x2 +2
Tập xác định: Hàm số có tập xác định 
Sự biến thiên: Ta có 
0.25
0.25
Bảng biến thiên: 
	 -1	 0	 1	 
 0	 0 0 
 2 	 
 1 1
0.25
Đồ thị: Học sinh tự vẽ hình
Nhận xét: đồ thị hàm số đối xứng qua trục tung Oy
0.25
2
Ta có 
 nên hàm số có 3 cực trị khi m > 1
0.25
Với đk m > 1 hàm số có 3 điểm cực trị là:
 Ta có: 
0.5
So sánh với điều kiện có 3 cực trị ta suy ra 
0.25
II
1
2
Đk:,ta có 
0.25
0.25
Vậy pt có 2 nghiệm: 
0.5
Đk: . Ta có 
0.25
vì và nên 2 x 7.Do đó -1<0 
nên x=y
0.25
Thế vào pt ban đầu ta được .Đặt (b>0) thì 
0.25
Từ đó tìm đựơc các nghiệm của hệ : x=y=0 và 
0.25
III
0.25
Tính 
0.25
Tính bằng cách đặt được 
0.25
0.25
IV
Từ giả thiết suy ra và 
0.25
Theo định lý Pythagoras ta có . 
Do đó tam giác vuông cân tại và 
0.25
Gọi thế thì tam giác cũng vuông cân và do đó suy ra 
0.25
Suy ra y ra (đ.v.d.t.). Vậy (đ.v.t.t.)
0.25
V
VI.a
1
Ta có: 3(a2 + b2 + c2) = (a + b + c)(a2 + b2 + c2)
	= a3 + b3 + c3 + a2b + b2c + c2a + ab2 + bc2 + ca2	 
mà	a3 + ab2 ³ 2a2b 
	b3 + bc2 ³ 2b2c
	c3 + ca2 ³ 2c2a	
Suy ra 3(a2 + b2 + c2) ³ 3(a2b + b2c + c2a) > 0
0.25
Suy ra 
0.25
Đặt t = a2 + b2 + c2, ta chứng minh được t ³ 3.
Suy ra Þ VT ³ 4
Dấu bằng xảy ra khi và chỉ khi a = b = c = 1
0.5
ptđt AB đi qua M(-3;-2) có dạng ax+by+3a+2b=0 . Đuờng tròn (C) có tâm I(2;3) và bán kính nên 
0.25
 hay 
pt AB: x- 3y-3 = 0 hoặc AB: 3x-y+7=0
0.25
TH1: AB: x- 3y-3 = 0, gọi A(3t+3; t)Þt>-1 và do IA2=2.R2=20Þ t = 1, t = -1 (loại). Suy ra A(6;1)Þ C(-2; 5)
0.25
TH2: AB: 3x-y+7=0, gọi A(t; 3t+7)Þt>0 và do IA2=2.R2=20Þ t = 0, t = -2 (không thoả mãn)
 0.25
2
+ ) Ta có: Suy ra phương trình mặt phẳng trung trực của AB, AC là: 
0.25
+) Vectơ pháp tuyến của mp(ABC) là Suy ra (ABC):
.
0.25
+) Giải hệ: . Suy ra tâm đường tròn là 
0.25
Bán kính là 
0.25
VII.a
0,25
0,25
0,25
Vậy: phần thực , phần ảo: 
0,25
VI.b
1
Ta có: . Toạ độ của I là nghiệm của hệ: 
. Vậy 
M là trung điểm cạnh AD . Suy ra M( 3; 0)
0.25
Ta có: 
Theo giả thiết: 
Vì I và M cùng thuộc đường thẳng d1 
Đường thẳng AD có PT: . Lại có: 
0.25
Toạ độ A, D là nghiệm của hệ PT: 
 hoặc . Vậy A( 2; 1), D( 4; -1)
0.25
 là trung điểm của AC suy ra: 
Tương tự I cũng là trung điểm của BD nên ta có B( 5; 4)
Vậy toạ độ các đỉnh của hình chữ nhật là: (2; 1), (5; 4), (7; 2), (4; -1)
0.25
2
Ta có là 1 vtpt của (ABC)
0.25
Suy ra pt (ABC) là (x – 0) + 2(y – 1) – 4(z – 2) = 0 hay x + 2y – 4z + 6 = 0
0.25
M(x; y; z) MA = MB = MC ta có 
0.25
M thuộc mp: 2x + 2y + z – 3 = 0 nên ta có hệ, giải hệ được x = 2, y = 3, z = -7
0.25
VII.b
Đặt . Ta có 
0.5
Vậy tập hợp các điểm cần tìm là 2 đường thẳng 
0.5

File đính kèm:

  • docDe33.2011.doc