Ứng dụng tính đơn điệu của hàm số để chứng minh bất đẳng thức giải Phương trình - Bất phương trình - Hệ bất phương trình

 

 4) Tính chất 4:

 Nếu y = f(x) tăng trên (a,b) và y = g(x) là hàm hằng hoặc là một hàm số giảm

 trên (a,b) thì phương trình f(x) = g(x) có nhiều nhất một nghiệm thuộc khỏang (a,b)

 

doc2 trang | Chia sẻ: tuanbinh | Lượt xem: 901 | Lượt tải: 0download
Bạn đang xem nội dung Ứng dụng tính đơn điệu của hàm số để chứng minh bất đẳng thức giải Phương trình - Bất phương trình - Hệ bất phương trình, để tải tài liệu về máy bạn hãy click vào nút TẢI VỀ
ỨNG DỤNG TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ ĐỂ 
CHỨNG MINH BẤT ĐẲNG THỨC
GIẢI PHƯƠNG TRÌNH - BẤT PHƯƠNG TRÌNH - HỆ BẤT PHƯƠNG TRÌNH 
******** 
	Cơ sở để giải quyết vấn đề này là dùng đạo hàm để xét tính đơn điệu của hàm số và dựa vào chiều biến thiên của hàm số để kết luận về nghiệm của phương trình , bất phương trình, hệ phương trình .
CÁC KIẾN THỨC CƠ BẢN
---------- 
 I. Định nghĩa : Cho hàm số y = f(x) xác định trong khoảng (a,b).
 a) f tăng ( hay đồng biến ) trên khoảng (a,b) x1, x2 (a,b) : x1 < x2 f(x1) < f(x2)
	b) f giảm ( hay nghịch biến ) trên khoảng (a,b) x1, x2 (a,b) : x1 f(x2)
II. Các tính chất :
 1) Tính chất 1: Giả sử hàm số y = f(x) tăng (hoặc giảm) trên khoảng (a,b) ta có :
	 f(u) = f(v) u = v (với u, v (a,b) )
	2) Tính chất 2: Giả sử hàm số y = f(x) tăng trên khoảng (a,b) ta có :
	 f(u) < f(v) u < v (với u, v (a,b) )
	3) Tính chất 3: Giả sử hàm số y = f(x) giảm trên khoảng (a,b) ta có :
	 f(u) v (với u, v (a,b) )
	4) Tính chất 4: 
 Nếu y = f(x) tăng trên (a,b) và y = g(x) là hàm hằng hoặc là một hàm số giảm
	trên (a,b) thì phương trình f(x) = g(x) có nhiều nhất một nghiệm thuộc khỏang (a,b)
 *Dựa vào tính chất trên ta suy ra :
 Nếu có x0 (a,b) sao cho f(x0) = g(x0) thì phương trình f(x) = g(x) có nghiệm duy nhất trên (a,b)
BÀI TẬP ÁP DỤNG 
Bài 1 : Giải các phương trình sau :
	1) 
	2) 
	3) 
Bài 2 : Giải các phương trình sau:
	1) 
	3) 
Bài 3 : Giải các hệ :
	1) với x, y (0,)
	2) 
Bài 4: Giải các bất phương trình sau.
	1) 5x + 12x > 13x
	2) x (x8 + x2 +16 ) > 6 ( 4 - x2 )
Bài 5 : Chứng minh các bất đẳng thức sau :
	1) ex > 1+x với x > 0
	2) ln (1 + x ) 0
	3) sinx 0
	4) 1 - x2 < cosx với x 0
------Hết-------

File đính kèm:

  • doc19.ungdungtinhdondieu.doc