Xac suất thống kê - Chương 2: Đại lượng ngẫu nhiên rời rạc

Câu hỏi :

Đo chiều cao của một người, gọi X là đại lượng thể hiện chiều cao của người đó, X có là biến ngẫu nhiên ?

Đếm số người đến cửa hàng trong ngày thứ 7, gọi X là đại lượng thể hiện số người đếm được, X có là biến ngẫu nhiên?

 

 

ppt13 trang | Chia sẻ: andy_Khanh | Lượt xem: 1599 | Lượt tải: 0download
Bạn đang xem nội dung Xac suất thống kê - Chương 2: Đại lượng ngẫu nhiên rời rạc, để tải tài liệu về máy bạn hãy click vào nút TẢI VỀ
CHƯƠNG 2ĐẠI LƯỢNG NGẪU NHIÊN RỜI RẠC2.1. Khái niệm biến ngẫu nhiên Một đại lượng mà giá trị của nó là ngẫu nhiên không dự đoán trước được, được gọi là ĐLNNCác biến ngẫu nhiên được ký hiệu bằng các chữ viết hoa X, Y, Z, còn các giá trị của chúng được ký hiệu bằng các chữ viết thường x, y, z...Tập hợp các giá trị của ĐLNN X được ký hiệu là X(). Câu hỏi :Đo chiều cao của một người, gọi X là đại lượng thể hiện chiều cao của người đó, X có là biến ngẫu nhiên ?Đếm số người đến cửa hàng trong ngày thứ 7, gọi X là đại lượng thể hiện số người đếm được, X có là biến ngẫu nhiên?2.2. Phân loại biến ngẫu nhiên Biến ngẫu nhiên rời rạc (Discrete Random Variable)Biến ngẫu nhiên liên tục (Continuous Random Variable)  Có thể nói là tất cả các đại lượng mà ta gặp trong thực tế đều là các biến ngẫu nhiên và chúng sẽ phải thuộc một trong hai nhóm rời rạc hay liên tục. Thí dụGieo một con xúc sắc ngẫu nhiên một lần. Gọi X là số nốt xuất hiện trên con xúc sắc.X là một ĐLNNRR và X()={1, 2, , 6}Chọn ngẫu nhiên 3 đứa trẻ từ nhóm gồm 6 nam và 4 nữ. Gọi X là số bé gái trong nhóm.X là ĐLNNRR và X()={0, 1, 2, 3}2.3. Phân bố xác suất và hàm phân bố xác suất Phân bố xác suất của ĐLNNRR X là một bảng trên đó ta ghi các giá trị mà X có thể nhận và kèm theo xác suất tương ứng để nó nhận giá trị đó2.4. Hàm phân bố xác suất Hàm phân bố xác suất (hay hàm phân bố) của DLNN X là một hàm F(x) cho phép xác định xác suất X nhận giá trị <xF(x)=p{X<x}2.4. Hàm phân bố xác suất 2.4. Hàm phân bố xác suất Hàm phân bố xác suất là một hàm bậc thang, không giảm và có bước nhảy tại các giá trị có thể của X. Độ lớn của bước nhảy tại xk là pk 2.5. Các đặc trưng của ĐLNNKỳ vọng: (Giá trị trung bình)Ý nghĩa: 	EX là giá trị trung bình mà biến ngẫu nhiên X nhận. 	Kỳ vọng để xác định vị trí của phân phốiMốt (mode)Mod(X) là giá trị có xác suất lớn nhất.Phương sai X có EX=. Độ lệch khỏi giá trị trung bình là X-. Phương sai của X là 1 số không âm ký hiệu là D(X) hoặc V(X) là độ lệch bình phương trung bình tức DX=E(X-)2Phương saiÝ nghĩa: Phương sai của bnn X là ôố dùng để đo độ phân tán của các giá trị của bnn X xung quanh EX của nó. DX nhỏ thì mức độ phân tán nhỏ, độ tập trung lớn và ngược lạiĐộ lệch tiêu chuẩn: Hệ số biến thiên: Thí dụ	Gieo ngẫu nhiên hai con xúc sắc. Gọi X là sự chênh lệch số nốt xuất hiện trên 2 con xúc sắc.Lập bảng phân bố xác suất.Tính kỳ vọng, mod, phương sai và độ lệch tiêu chuẩn

File đính kèm:

  • pptchuong_2.ppt
Bài giảng liên quan