Bài giảng Đại số lớp 7 - Tiết 61: Cộng, trừ đa thức một biến

Chú ý: sgk trang 45

Lưu ý:

Vì P(x) - Q(x) = P(x) + [- Q(x)]

Ta có thể trừ đa thức như sau:

Xác định đa thức - Q(x) ?

 

ppt5 trang | Chia sẻ: minhanh89 | Lượt xem: 504 | Lượt tải: 0download
Bạn đang xem nội dung Bài giảng Đại số lớp 7 - Tiết 61: Cộng, trừ đa thức một biến, để tải tài liệu về máy bạn hãy click vào nút TẢI VỀ
NHIỆT LIỆT CHÀO MỪNG QUÝ THẦY, CÔ VỀ DỰ GIỜ, THĂM LỚPGiáo viên: Hồ Quốc VươngPHÒNG GIÁO DỤC& ĐÀO TẠO HUYỆN VẠN NINHTRƯỜNG THCS TRẦN PHÚKIỂM TRA BÀI CŨBài tập: Cho hai đa thức P(x) = 2x5+ 5x4 - x3 + x2 - x -1; Q(x) = -x4 + x3 + 5x + 2Hãy tính: a) P(x) + Q(x) 	b) P(x) - Q(x) ĐÁP ÁN:= 2x5 + 4x4 + x2 + 4x + 1 = 2x5 + (5x4 - x4) + (- x3 + x3) + x2 + (- x + 5x) + ( -1 + 2)a) P(x) + Q(x) = (2x5 + 5x4 - x3 + x2 - x - 1) + ( -x4 + x3 + 5x + 2 ) = 2x5 + 5x4 - x3 + x2 - x -1 + x4 - x3 - 5x - 2= 2x5 + (5x4 + x4) + (- x3 - x3) + x2 + (- x - 5x) + (- 1 - 2)= 2x5 + 6x4 - 2x3 + x2 - 6x - 3 b) P(x)-Q(x) = (2x5 + 5x4 - x3 + x2 - x - 1) - (- x4 + x3 + 5x + 2 ) = 2x5 + 5x4 - x3 + x2 - x - 1 + -x4 + x3 + 5x + 2 Cách 2: (Cộng theo cột dọc )P(x) = 2x5  5x4  x3 + x2 – x - 1Q(x) = - x4 + x3 + 5x + 2+P(x) + Q(x) =1. Cộng hai đa thức một biến:Ví dụ: Cho hai đa thức P(x) = 2x5 + 5x4 – x3 + x2 – x -1 Q(x) = -x4 + x3 +5x + 2Hãy tính tổng P(x) + Q(x)Giải:TiÕt 61: céng, trõ ®a thøc mét biÕn2x5 + 4x4 + x2 + 4x + 1 = 2x5 + 4x4 + x2 + 4x + 1 = 2x5 + (5x4 - x4) + (- x3 + x3) + x2 + (- x + 5x)+ ( -1 + 2)Cách 1: P(x) + Q(x)= 2x5 + 5x4 - x3 + x2 - x - 1 + (-x4) + x3 + 5x + 2 = (2x5 + 5x4 - x3 + x2 - x - 1) + ( -x4 + x3 + 5x + 2 )2. Trừ hai đa thức một biếnVí dụ: Tính P(x) - Q(x)= 2x5 + 5x4 - x3 + x2 - x -1 + x4 - x3 - 5x - 2= 2x5 + (5x4 + x4) + (- x3 - x3) + x2 + (- x - 5x) + (- 1 - 2)= 2x5 + 6x4 - 2x3 + x2 - 6x - 3 Cách 1: P(x)-Q(x)= (2x5 + 5x4 - x3 + x2 - x - 1) - (- x4 + x3 + 5x + 2 )Cách 2: (trừ theo cột dọc )P(x) = 2x5  5x4  x3 + x2 – x - 1Q(x) = - x4 + x3 + 5x + 2-P(x) + Q(x) =2x5 + 6x4 -2x3 +x2 - 6x - 3 Chú ý: sgk trang 45-Xác định đa thức - Q(x) ?-Q(x) = - (-x4 + x3 + 5x +2)Với Q(x) = (-x4 + x3 + 5x +2)= x4 - x3 -5x - 2 P(x) = 2x5 + 5x4 - x3 + x2 - x -1P(x)+[- Q(x)]-Q(x) = x4 - x3 -5x -2 = 2x5 + 6x4 -2x3 + x2 - 6x -3Vì P(x) - Q(x) = P(x) + [- Q(x)] +* Lưu ý:Ta có thể trừ đa thức như sau:-Thực hiện phép cộng1. Cộng hai đa thức một biến:TiÕt 61: céng, trõ ®a thøc mét biÕn2. Trừ hai đa thức một biến3. Củng cố:M(x) = x4 + 5x3 - x2 + x - 0,5N(x) = 3x4 - 5x2 - x - 2,5M(x)+N(x) = 4x4 +5x3 - 6x2 - 3 +Bài tập ?1: Cho hai đa thức :M(x) = x4 + 5x3 - x2 + x - 0,5N(x) = 3x4 - 5x2 - x - 2,5Hãy tính: a) M(x) + N(x) b) M(x) - N(x) M(x) = x4 + 5x3 - x2 + x - 0,5N(x) = 3x4 - 5x2 - x - 2,5M(x)-N(x) = -2x4 + 5x3 + 4x2 +2x + 2 -a)b)Giải:Bài tập 44a(sgk): Cho hai đa thức P(x)= - 5x3 - + 8x4 + x2 và Q(x)= x2 - 5x - 2x3 + x4 - Hãy tính P(x) + Q(x)1323Giải:Q(x) = x4 - 2x3 + x2 - 5x - 23P(x) = 8x4 - 5x3 + x2 -13+P(x)+Q(x) = 9x4 - 7x3 + 2x2 - 5x - 1 HƯỚNG DẪN VỀ NHÀ- Làm các bài tập: 44; 45; 46; 48 (SGK/ 45+46).Hướng dẫn bài 45:Tính Q(x): a) Vì P(x) + Q(x) = x5 – 2x2 + 1 => Q(x) = (x5 – 2x2 + 1) – P(x)Tính R(x): b) Vì P(x) – R(x) = x3 => R(x) = P(x) – x3 Thay đa thức P(x) vào rồi thực hiện phép tính.CẢM ƠN QUÝ THẦY CÔ GIÁO ĐÃ THAM DỰ TIẾT GIẢNG!

File đính kèm:

  • pptCong_tru_da_thuc_1_bien.ppt