Bài giảng môn học Đại số lớp 10 - Bài 1: Bất đẳng thức
Tổng của một số dương với nghịch đảo của nó lớn hơn hoặc bằng 2.
Nếu x, y cng dương v cĩ tổng khơng đổi thì tích xy lớn nhất khi v chỉ khi x=y
Nếu x, y cng dương v cĩ tích khơng đổi thì tổng x+y nhỏ nhất khi v chỉ khi x=y
NHIỆT LIỆT CHÀO MỪNG QUÝ VỊ ĐẠI BIỂU, QUÝ THẦY CÔ,CÁC EM HỌC SINH VỀ DỰ HỘI THẢO MÔN TOÁN THPTTỔ TỐN TIN TRƯỜNG THPT LÂM HÀChương IV : BẤT ĐẲNG THỨC BẤT PHƯƠNG TRÌNHTiết 29 –Đại số 10Chương trình cơ bản Giáo viên thực hiện : Nguyễn Thị Kim ChiNhà tốn học thiên tài người PHÁP Augustin Louis Cauchy(1789 -1857)BÀI 1: BẤT ĐẲNG THỨCI. ÔN TẬP VỀ BẤT ĐẲNG THỨC II. BẤT ĐẲNG THỨC CÓ DẤU TRỊ TUYỆT ĐỐIIII. BẤT ĐẲNG THỨC CÔSI * Ví dụ mở đầu:1. Bất Đẳng Thức Côsi:2. Các Hệ Quả:3. Ví Dụ :Ví dụ: Cho . Chứng minh rằng : Đẳng thức xảy ra khi nào ? . = . = Đẳng thức xảy ra = Giải:III. BẤT ĐẲNG THỨC CÔSIIII. BẤT ĐẲNG THỨC CÔSI1. Bất đẳng thức CÔSI:Định lý: Trung bình cộng của hai số không âm lớn hơn hoăïc bằng trung bình nhân của nó Đẳng thức xảy ra: Hay: Ví dụ: Vd 1: Cho hai số a>0, b>0. Chứng minh rằng:Giải :* Áp dụng Côsi cho 2 số dương a,b:Áp dụng Côsi cho 2 số dương 1, ab: Nhân vế theo vế của (1) và(2) ta có:III. BẤT ĐẲNG THỨC CÔSI* Đẳng thức xảy ra khi: ( Do a >0, b >0 )Ví du:ï Vd 2: Cho số dương a. Chứng minh rằng :Giải:Áp dụng Côsi cho 2 số dương :III. BẤT ĐẲNG THỨC CÔSIĐẳng thức xảy ra khi: a=1 (do a>0)2. Các hệ quả :Hệ quả 1:Tổng của một số dương với nghịch đảo của nó lớn hơn hoặc bằng 2.III. BẤT ĐẲNG THỨC CÔSIHệ quả 2: Nếu x, y cùng dương và cĩ tổng khơng đổi thì tích xy lớn nhất khi và chỉ khi x=y Hệ quả 3: Nếu x, y cùng dương và cĩ tích khơng đổi thì tổng x+y nhỏ nhất khi và chỉ khi x=y III. BẤT ĐẲNG THỨC CÔSI Với 160.000m dây ta sẽ rào khu rừng này một vùng hình chữ nhật của riêng ta. Làm sao để lãnh thổ của ta rộng nhất ? III. BẤT ĐẲNG THỨC CÔSIIII. BẤT ĐẲNG THỨC CÔSI ? Giải:III. BẤT ĐẲNG THỨC CÔSIGọi khu rừng được rào cĩ chiều dài là x, chiều rộng là y (x,y>0). Khi đĩ diện tích khu rừng là xy . Chu vi là : 2(x + y) =160.000 hay x+y=80.000Theo Cơ-si ta cĩ:Đẳng thức xảy ra, tức là xy=1.600.000.000 khi x=y=40.000Nên xy đạt giá trị lớn nhất là : xy=1.600.000.000 khi x=y=40.000 Vậy khu rừng được rào theo hình vuơng cĩ cạnh là 40.000 m sẽ cĩ diên tích lớn nhất Ý NGHĨA HÌNH HỌCTrong tất cả các hình chữ nhật cĩ cùng chu vi, hình vuơng cĩ diện tích lớn nhất.2. Các hệ quả :III. BẤT ĐẲNG THỨC CÔSIHệ quả 2:15 cm216 cm2Chu vi =16cm Ý NGHĨA HÌNH HỌCTrong tất cả các hình chữ nhật cĩ cùng diện tích, hình vuơng cĩ chu vi nhỏ nhất.2. Các hệ quả :III. BẤT ĐẲNG THỨC CÔSIHệ quả 3:16cm20cmDiện tích =16cm23. Các ví dụ :III. BẤT ĐẲNG THỨC CÔSIVd1:Tìm x để đạt giá trị nhỏ nhất với x>0Vd2:Tìm x để đạt giá trị nhỏ nhất với x>-1Giải :Giải :Vd3:Tìm x để f(x) = (x+3)(5-x) đạt giá trị lớn nhất với Giải : 3. Các vi dụ :III. BẤT ĐẲNG THỨC CÔSIVd1:Tìm x để đạt giá trị nhỏ nhất với x>0Giải :* Vì x>0 nên >0. Áp dụng cơsi cho hai số x và : * f(x) đạt giá trị nhỏ nhất : f(x) = 3. Các vi dụ :III. BẤT ĐẲNG THỨC CÔSIVd2:Tìm x để đạt giá trị nhỏ nhất với x> -1Giải :Áp dụng BĐT Cơsi cho hai số (x+1) và : Vì x> 1 nên x + 1 > 0 ; > 0 f(x) = (x + 1) + -1 ≥ Vậy f(x) đạt giá trị nhỏ nhất là : f(x) (x + 1) = (x + 1)2 = 4 x =1 hoặc x=-3x=1 (do x>-1)Vd3: Tìm x để f(x)=(x+3)(5-x)đạt giá trị lớn nhất vớiGiải : Vì nên Áp dụng cơsi cho hai số (x+3) và (5-x) : Đẳng thức xảy ra khi x+3=5-x x=4 Vậy f(x) đạt giá trị nhỏ nhất là : f(x)=16III. BẤT ĐẲNG THỨC CÔSIIII. BẤT ĐẲNG THỨC CÔSIBất đẳng thức Cơsi:Các hệ quả :Ứng dụng :Chứng minh bất đẳng thứcTìm giá trị lớn nhất, nhỏ nhất của hàm số, biểu thức Củng cố :Chúc quý vị đại biểu và các em học sinh III. BẤT ĐẲNG THỨC CÔSIHayĐẳng thức xảy ra khi a=b2. Các hệ quả :Hệ quả 1:Tổng của một số dương với nghịch đảo của nó lớn hơn hoặc bằng 2.III. BẤT ĐẲNG THỨC CÔSIHệ quả 2 Nếu x, y cùng dương và cĩ tổng khơng đổi thì tích xy lớn nhất khi và chỉ khi x=y Hệ quả 3 Nếu x, y cùng dương và cĩ tích khơng đổi thì tổng x+y nhỏ nhất khi và chỉ khi x=y
File đính kèm:
- bat_dang_thuc_co_si.ppt