Bài giảng môn Toán 11 - Bài dạy: Hàm số liên tục
Khi nào hàm số y = f(x) liên tục tại x0?
Ta nói hàm số liên tục liên tục tại điểm x = 1
và hàm số liên tục y = g(x) không liên tục tại điểm x = 1.
Học sinh khái quát thành định nghĩa SGK
Kiểm tra bài cũ: Cho hàm số + Tìm tập xác định của hàm số trênHọc sinh trả bài: + Tập xác định: + ++ So sánh và + So sánh vàHÀM SỐ LIÊN TỤCĐẠI SỐ VÀ GIẢI TÍCH 11 Tiết 58HÀM SỐ LIÊN TỤC+ Tính f(1) và (nếu có)+ Tính g(1) và (nếu có)I. Hàm số liên tục tại một điểm: nếunếuXét hàm số và nếuGiải: không tồn tạiHÀM SỐ LIÊN TỤC 1O 1 -1 2xyy=g(x)1O 1xyy=x2Mô tả đồ thị không tồn tạiTa nói hàm số liên tục liên tục tại điểm x = 1Học sinh khái quát thành định nghĩa SGKKhi nào hàm số y = f(x) liên tục tại x0? và hàm số liên tục y = g(x) không liên tục tại điểm x = 1.HÀM SỐ LIÊN TỤC Ví dụ 1: Xét tính liên tục của hàm số tại x0=3Giải: Hàm số xác định trên do đó xác định trên khoảng chứa Vậy hàm số liên tục tại Giải: Hàm số xác định trên do đó xác định trên khoảng chứa Vậy hàm số liên tục tại Ví dụ 2: Xét tính liên tục của hàm số tại HÀM SỐ LIÊN TỤCĐể xét tính liên tục của hàm số y = f(x) tại x0 ta có mấy bước?+ Tính + Tính Hàm số liên tục tại điểm Hàm số gián đoạn tại điểm HÀM SỐ LIÊN TỤCI. Hàm số liên tục tại một điểm: II. Hàm số liên tục trên một khoảng: II. Hàm số liên tục trên một khoảng: abOyxy=f(x)Dựa vào hình vẽ, xét tính liên tục của hàm số y = f(x).Có nhận xét gì khi hàm số y = f(x) liên tục trên khoảng và Hàm số y = f(x) liên tục trên khoảngHàm số y = f(x) liên tục trên đoạn [];a;bnếu nó liên tục tại mọi điểm của khoảng đó.nếu nó liên tục trên khoảng và Định nghĩa 2:HÀM SỐ LIÊN TỤCOabxyNhìn vào đồ thịEm có nhận xét gì về tính liên tục của hàm số trên khoảng (a;b)?Là đồ thị của một hàm số không liên tục trên khoảng (a;b).HÀM SỐ LIÊN TỤCI. Hàm số liên tục tại một điểm: II. Hàm số liên tục trên một khoảng: + Ví dụ 3: Xét tính liên tục của hàm số trên khoảngXét tính liên tục của hàm số trên đoạn . + Ví dụ 4: HÀM SỐ LIÊN TỤC+ Ví dụ 5: Xét tính liên tục của hàm sốtại điểm nếunếuGiải:Ta có: I. Hàm số liên tục tại một điểm:II. Hàm số liên tục trên một khoảng:Với a = 4 ta có nên hàm số liên tục tại Với ta có nên hàm số gián đoạn tại HÀM SỐ LIÊN TỤCĐẠI SỐ VÀ GIẢI TÍCH 11 Tiết 58TỔ TOÁN TRƯỜNG THPT KRÔNG ANAXIN CHÂN THÀNH CẢM ƠN!
File đính kèm:
- ham_so_lien_tuc_tiet_1.ppt