Bài giảng Môn Toán lớp 7 - Bài 8 - Tiết 61 - Tính chất ba đường trung trực của tam giác
Vì O nằm trên đường trung trực c của đoạn thẳng AC nên OA =OC (1)
Vì O nằm trên đường trung trực b của đoạn thẳng AB nên OA = OB (2)
Từ (1) và (2) => OB = OC ( = OA) => O nằm trên trung trực của BC
Vậy ba đường trung trực của tam giác ABC cùng đi qua điểm O . Ta có : OA = OB = OC.
KIEÅM TRA BAỉI CUế Phaựt bieồu tớnh chaỏt ủửụứng trung trửùc cuỷa moọt ủoaùn thaỳng ? M d => MA=MB MA=MB => M d Vụựi d laứ ủửụứng trung trửùc cuỷa ủoaùn thaỳng AB. d . M Vậy điểm nào cách đều ba đỉnh của một tam giác? 1.Đường trung trực của tam giác - a là đường trung trực ứng với cạnh BC của tam giác ABC Vẽ tam giác ABC, vẽ đường trung trực của cạnh BC . - Trong một tam giác đường trung trực của mỗi cạnh gọi là đường trung trực của tam giác đó. Mỗi tam giác có mấy đường trung trực? - Moói tam giaực coự ba ủửụứng trung trửùc * Nhận xét 1.Đường trung trực của tam giác ?1 Trong một tam giác cân , đường trung trực của cạnh đáy đồng thời là đường trung tuyến ứng với cạnh này Chứng minh: Giải: Tam giác ABC, AB=AC d vuông góc với BC tại M; MB =MC A thuộc d (hay d là đường trung tuyến) 1.Đường trung trực của tam giác ?1 Trong một tam giác cân , đường trung trực của cạnh đáy đồng thời là đường trung tuyến ứng với cạnh này Chứng minh: Giải: Vì d là đường trung trực của cạnh BC do đó d là tập hợp tất cả các điểm cách đều B và C 1.Đường trung trực của tam giác - Trong một tam giác cân , đường trung trực của cạnh đáy đồng thời là ủửụứng phaõn giaực, ủửụứng trung tuyeỏn ứng với cạnh này. * Lưu ý: 2.Tính chất ba đường trung trực của tam giác ?2 Dùng thước và compa, dựng ba đường trung trực của tam giác ABC. Rút ra nhận xét a/ Định lí: O M b . . N c . d E 2.Tính chất ba đường trung trực của tam giác a/ Định lí: Tam giác ABC b là đường trung trực của AC c là đường trung trực của AB b và c cắt nhau tại O O nằm trên đường trung trực của BC OA = OB = OC. b/ Bài toán: Cho tam giác ABC. Vẽ hai trung trực của cạnh AB, AC. Hai trung trực này cắt nhau tại O. Chứng minh rằng: a. O nằm trên đường trung trực của BC b. OA = OB = OC. Cho tam giác ABC. Vẽ hai trung trực của cạnh AB, AC. Hai trung trực này cắt nhau tại O. Chứng minh rằng: a. O nằm trên đường trung trực của BC b. OA = OB = OC. 2.Tính chất ba đường trung trực của tam giác Chứng minh: Vì O nằm trên đường trung trực c của đoạn thẳng AC nên OA =OC (1) - Vì O nằm trên đường trung trực b của đoạn thẳng AB nên OA = OB (2) Vậy ba đường trung trực của tam giác ABC cùng đi qua điểm O . Ta có : OA = OB = OC. - Từ (1) và (2) => OB = OC ( = OA) => O nằm trên trung trực của BC 2.Tính chất ba đường trung trực của tam giác a/ Định lí: Vậy điểm nào cách đều ba đỉnh của một tam giác? Điểm cách đều ba đỉnh của một tam giác là giao điểm của ba đường trung trực của tam giác đó. c/ Chú ý: 2.Tính chất ba đường trung trực của tam giác - Đường tròn ngoại tiếp tam giác: Là đường tròn đi qua ba đỉnh của một tam giác - Giao điểm của ba đường trung trực gọi là tâm đường tròn ngoại tiếp tam giác. a) Tam giỏc tự b) Tam giỏc nhọn c) Tam giỏc vuụng 2.Tính chất ba đường trung trực của tam giác 1/ Tâm của đường tròn ngoại tiếp một tam giác là giao điểm của ba đường: A. trung tuyến. B. trung trực. C. phân giác. 2.Tính chất ba đường trung trực của tam giác 2/ Nếu tam giác ABC vuông thì tâm của đường tròn ngoại tiếp nằm ở vị trí nào ? A. Bên trong tam giác. B. Bên ngoài tam giác C. Trên cạnh huyền. Nếu tam giác ABC vuông thì tâm của đường tròn ngoại tiếp Nằm trên trung điểm của cạnh huyền. 3/ củng cố Bài tập 53/ trang80Ba gia đỡnh quyết định đào chung một cỏi giếng. Phải chọn vị trớ của giếng ở đõu để cỏc khoảng cỏch từ giếng đến cỏc nhà bằng nhau ? Bài 53 (sgk/80). Vị trí chọn để đào giếng là giao điểm các đường trung trực của tam giác ABC A B C Coi địa điểm ba gia đình là ba đỉnh của tam giác ABC 4/ Hướng dẫn về nhà Ôn tập các định lí về tính chất đường trung trực của một đoạn thẳng, tính chất ba đường trung trực của tam giác ,cách vẽ đường trung trực của một đoạn thẳng bằng thước và com pa. Bài tập về nhà : Bài 52 (sgk/t79), bài 54 ->57 (sgk/t80) Xin chõn thành cảm ơn cỏc thầy cụ và cỏc em học sinh
File đính kèm:
- tinh chat ba dg trung truc cua tam giacHAY.ppt