Bài giảng Toán học 10 - Bài 5: Bất phương trình và hệ bất phương trình bậc nhất (luyện tập)

Bài tập 3: Một nhà khoa học nghiên cứu về tác động phối hợp của vitamin A và vitamin B đối với cơ thể con người. Thu được kết quả như sau:

1. Mỗi người có thể tiếp nhận được mỗi ngày không quá 600 đơn vị

 vitamin A và không quá 500 đơn vị vitamin B.

2. Một người một ngày cần từ 400 đến 1000 đơn vị vitamin cả A lẫn B.

3. Do tác động phối hợp của hai loại vitamin, mỗi ngày, số đơn vị

 vitamin B không ít hơn 1/2 số đơn vị vitamin A nhưng không nhiều

 hơn ba lần số đơn vị vitamin A

 Gọi x, y lần lượt là số đơn vị vitamin A và B mà bạn đồng mỗi

 ngày. Em hãy thiết lập các bất phương trình biểu diễn các điều kiện

 trên theo hai ẩn x, y ?

 Em hãy tìm phương án dùng hai loại vitamin A và B thoã mãn các điều kiện để số tiền T trả là ít nhất, biết rằng giá mỗi đơn vị vitamin A là 9 đồng và mỗi đơn vị vitammin B giá 7,5 đồng ?

 

 

ppt12 trang | Chia sẻ: minhanh89 | Lượt xem: 921 | Lượt tải: 3download
Bạn đang xem nội dung Bài giảng Toán học 10 - Bài 5: Bất phương trình và hệ bất phương trình bậc nhất (luyện tập), để tải tài liệu về máy bạn hãy click vào nút TẢI VỀ
Chào mừng các thầy, cô giáovề dự giờ lớp 10A1THPT Lê Thị Pha-Bảo LộcGiáo viên: Đinh Chí VinhMôn: Đại số 10ATóm tắt1. Các bước xác định miền nghiệm của hệ bất phương trình bậc nhất 2 ẩn: B1: Xác định miền nghiệm của mỗi bất phương trình trong hệ.	B2: Thực hiện bước 1 đối với tất cả các BPT trong hệ trên cùng một mặt phẳng toạ độ, miền còn lại không bị gạch chính là miền nghiệm của hệ BPT đã cho.2. Bài toán tìm giá trị lớn nhất (nhỏ nhất) của T(x,y) trên miền: nghiệm của hệ BPT bậc nhất hai ẩn (Miền nghiệm là miền đa giác lồi - tính cả biên): 	B1: Tìm toạ độ tất cả các đỉnh của miền đa giác.	B2: Thay toạ độ tất cả các đỉnh của đa giác vào T(x;y).	B3: So sánh và kết luận.3. Bài toán kinh tế: Đưa về bài toán 2.Bài tập 1: Xác định miền nghiệm của các hệ BPT saua.(1)b.(2)Bài 5: bất phương trình và hệ bất phương trình bậc nhất (luyện tập)Giải:a.(1)Ta chuyển về hệ:233x+2y-6 = 03124x + y -12 = 0 1y1oxb.(2)Câu o11xy-13x + 2y + 3 = 03-22x - 3y - 6 = 01000400400600600oyx10001200100300x = 600 y = 500x + y = 400x + y = 1000Bài tập 2: Em hãy tìm giá trị lớn nhất, nhỏ nhất của T = 2x - y với x, y thoã mãn :(2)GiảiO(0 ; 0)A(-3/2 ; 0)B(3/13 ; -24/13)C(3 ; 0)T = 30/13T = 63-2-1o11xy3x + 2y +3 = 02x - 3y - 6 = 0ABC Vậy GTLN của T là 6, đạt được khi x = 3, y = 0 và GTNN của T là - 3, đạt được khi x = -3/2, y = 0.Theo câu b, BT1 ta có miền nghiệm của hệ BPT là miền tứ giác OABC như hình bên:T = 0T = - 3Bài tập 3: Một nhà khoa học nghiên cứu về tác động phối hợp của vitamin A và vitamin B đối với cơ thể con người. Thu được kết quả như sau:1. Mỗi người có thể tiếp nhận được mỗi ngày không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B.2. Một người một ngày cần từ 400 đến 1000 đơn vị vitamin cả A lẫn B.3. Do tác động phối hợp của hai loại vitamin, mỗi ngày, số đơn vị vitamin B không ít hơn 1/2 số đơn vị vitamin A nhưng không nhiều hơn ba lần số đơn vị vitamin A Gọi x, y lần lượt là số đơn vị vitamin A và B mà bạn đồng mỗi ngày. Em hãy thiết lập các bất phương trình biểu diễn các điều kiện trên theo hai ẩn x, y ? Em hãy tìm phương án dùng hai loại vitamin A và B thoã mãn các điều kiện để số tiền T trả là ít nhất, biết rằng giá mỗi đơn vị vitamin A là 9 đồng và mỗi đơn vị vitammin B giá 7,5 đồng ?	 Tóm tắt bài giải số 3: Gọi x, y lần lượt là số đơn vị vitamin A và B dùng mỗi ngày:(1)(2)(3)Như thế chúng ta có hệ điều kiện: Với các giả thiết trong bài toán thì số tiền để mua hai loại vitamin là: T(x;y) = 9x + 7,5y. Vậy ta cần tìm điểm S(x; y) thuộc miền nghiệm của hệ (3) sao cho giá trị của T(x;y) nhỏ nhất là nhỏ nhất.1000400400600600oyx10001200100300MNPQRSM(100 ; 300);N(800/3 ; 400/3)R(500 ; 500);P(600 ; 300);S(1500 ; 500)Q(600 ; 400) Thay vào T(x ; y) ta thấy T(x; y) đạt giá trị nhỏ nhất tại M(100 ; 300) hay mỗi ngày tốt nhất nên dùng 100 đơn vị vitamin A và 300 đơn vị vitamin B. Chi phí phải trả mỗi ngày là 3150 đồng.Tổng kết các dạng toán thường gặp trong bài:1. Xác định miền nghiệm của BPT bậc nhất 2 ẩn.2. Xác định miền nghiệm của hệ BPT bậc nhất 2 ẩn.4. Bài toán kinh tế: Đưa về bài toán 3yox3. Tìm giá trị lớn nhất, nhỏ nhất của T(x; y) trên miền đa giác phẳng lồi - kể cả biên của đa giác.SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH LÂM ĐỒNGTRƯỜNG THPT Lấ THỊ PHAGiỏo viờn:Đinh Chớ VinhTIẾT HỌC ĐẾN ĐÂY KẾT THÚC CHÂN THÀNH CÁM ƠN QUí THẦY Cễ VÀ CÁC EM ĐÃCHÚ í THEO DếI 

File đính kèm:

  • pptLuyen_tapBptHe_Bpt_bac_nhat_2_an.ppt