Bài tập phương trình lượng giác
Bài tập phương trình lượng giác
Bạn đang xem nội dung Bài tập phương trình lượng giác, để tải tài liệu về máy bạn hãy click vào nút TẢI VỀ
Đỗ Ngọc Nam_THPT Trung Giã BÀI TẬP PHƯƠNG TRÌNH LƯỢNG GIÁC [1] sin sin 5 8cos .cos3 sin 3 sin x x x x x x + = . Đ/s: ( ) ( ); 8 4 2 l x l x k kpi pi pi pi= + ∈ = + ∈Z Z [2] 2sin 6 2sin 4 3 os2 3 sin 2x x c x x− + = + . Đ/s: x kpi= , ; 12 2 18 3 k k x x pi pi pi pi = − + = + [3] 4sin3x -13sin2x + 4sinx = 3cos3x – 13cosx + 8cos2x. Đ/s: 2 , 2 , 2 6 3 2 2 k x x k x kpi pi pi pipi α pi= + = + = − + [4] ( )2 cos sin1 tan cot 2 cot 1 x x x x x − = + − . Đ/s: ( )2 4 x k kpi pi= − + ∈ℤ [5] 1 sin 2cot 2sin sin cos 22 x x x x x pi + = + + . Đ/s: 52 ; 2 . 6 6 x k x kpi pipi pi= + = + [6] 2)cos3(sin3sin =+ xxx . Đ/s: 6 kpi pi+ [7] ( ) ( )3sin 2 cos 3 2 3 cos 3 3 cos 2 8 3 cos s inx 3 3 0x x x x x+ − − + − − = . Đ/s: ,3 2 x k k x k pi pi pi = + ∈ Ζ = [8] 24sin .sin .sin 4 3.cos .cos .cos 2 3 3 3 3 x x x x x x pi pi pi pi + − − + + = . Đ/s: 2 , Z 18 3 x k kpi pi= + ∈ [9] ( ) sin3sin2 cos2 tan sin cos cos x x x x x x x − + = + [10] 4 2 43sin 2cos 3 3 3 cos 1x x cos x cos x x+ + = − + . Đ/s: & 2 , 4 2 x k x k kpi pi pi= + = ∈Z [11] 52 2 os sin 1 12 c x x pi − = . Đ/s: 3; 6 4 x k x kpi pipi pi= + = + [12] 2 4 23sin 4 .sin os 1 os 2 x x c x c x+ − = . Đ/s: vô nghiệm [13] sin4x + cos3x + cosx = 4sinx + 2 [14] 2sin(x + 4 pi ).cos(x + 6 pi ) + cos2x = 0. Đ/s: 7, 4 24 x k x kπ ππ π=− + = + [15] 2 sin(2 ) sinx 3cos 2 0 4 x x pi + − − + = [16] 2tanx + cotx = 2sin2x + x2sin 1 . [17] cos8x + 3cos4x + 3cos2x = 8cosx.cos33x – 2 1 . [18] sin 2x.(1 + tanx) = 3sinx.(cosx – sinx) + 3 [19] cot2x – 2tan4x – tan2x = - 4 3 [20] 2sin2(x - 4 pi ) = 2sin2x - tanx. [21] xx xx cossin cossin − + + 2tan2x + cos2x = 0. [22] sin 2 1 2 os sin cos 2. tan x c x x x x + = + . Đ/s: pipi kx += 2 ; .,, 3 2 4 Z∈+= tktx pipi Đỗ Ngọc Nam_THPT Trung Giã [23] ( ) 32cos13 3 cos3 cos5 8cos .cos 4x x x x x+ + = . Đ/s: 12 kπ [24] sin 2 cos 2 tan cot cos sin x x x x x x + = − . Đ/s: 2 3 kπ π± + [25] sin 4 2 cos3 4sin cosx x x x+ = + + . Đ/s: 52 ; 2 ; 2 6 6 k k kπ ππ π π+ + [26] 3 3sin cos 12 2 cos 2 sin 3 x x x x − = + . Đ/s: 2 2 kπ π+ [27] ( ) 22cos3 .cos 3 1 sin 2 2 3 cos 2 4 x x x x π + + = + [28] 5cos sin 3 2 sin 2 4 x x x π + − = + . Đ/s: 2 3 kπ π± + [29] 4 4 5cos sin sin 2 .cos 2 tan tan 4 4 4 4 x x x x x x π π π + + = − + − . Đ/s: ; 8 2 kk π ππ − + [30] 1 sin 2cot 2sin sin cos 22 x x x x x π + = + + . Đ/s: 2, 2 4 3 lkπ π ππ+ + [31] ( ) 2sin 2 1 2cos3 sin 2sin 2 0 4 x x x x π + + − + = . Đ/s: 2 2 lπ π+ [32] 22 3 cos 2 tan 4sin cot 2 4 x x x x π − = − + . Đ/s: 7, 12 36 3 kkπ π ππ+ + [33] 2 22 sin sin 3 sin . tan tan 3 3 4 4 x x x x x π π π π + + − = + + − . Đ/s: 5, 2 , 2 6 6 k k kπ ππ π π+ + [34] 2 2 2 1 1 sin 2 4sin 2 cos sin 4 x x x x π − =− − . Đ/s: 4 2 kπ π+ [35] ( ) 21 2cos3 sin sin 2 2sin 2 0 4 x x x x π + + − + = . Đ/s: 2 2 kπ π+ [36] 2sin ( 3 sin ) 2 3 3 0 2sin 1 x x cosx cos x x + − − = − . Đ/s: 2 , 5 6 5 k k tπ π+ ≠ [37] 15tan cot 4sin 4 x x x π − = + . Đ/s: 2, 4 4 3 k kπ π ππ+ + [38] 32cos cos 2 sin 0x x x+ + = . Đ/s: , 2 4 2 k kπ ππ π− + + [39] 2 2 24sin 1 8sin .cos 4cos 2x x x x+ = + [40] 2 22sin .sin 2 cos .sin 2 1 2cos 4 x x x x x π − + = − [41] sin 2 2cos 2 1 sin 4cosx x x x+ = + − . Đ/s: 2 3 x k kpi pi= ± + ∈ℤ Đỗ Ngọc Nam_THPT Trung Giã [42] (1 cos 2 )sin 2 2(sin 3 sin )(1 sin ) 1 sin x x x x x x + = + + − . Đ/s: 2 2 2 2 3 x k x k k Z x k pi pi pi pi pi = − = + ∈ = ± + [43] 1 3cos cos 2 2 cos 3 4 sin .sin 2x x x x x+ + − = . Đ/s: 2 2 2 3 x K x K pi pi pi pi = + = ± + [44] 4sin3x -13sin2x + 4sinx = 3cos3x – 13cosx + 8cos2x. Đ/s: (sin2x - cosx)(4cosx +3sinx – 5) = 0???? [45] +=+ 4 3sinsin222sinsin2 2 pixxxx . Đ/s: x = k 28 , pipi pi kx +−= . [46] 2tancot) 4 2(cos2 2 −−=+ xxx pi . Đ/s: , 8 2 l x l π π = + ∈ ℤ [47] 1 cos 2sin 2 3 cos 3 sin x x x x + = + − . Đ/s: 2 3 kπ π± + [48] 2cos 2 1cot 1 sin sin 2 1 tan 2 x x x x x − = + − + . Đ/s: 4 lπ π+ [49] 4 4 2 2 2 2sin cos sin 2 cot 2 .cos 2 cot 2 cos 1 cos 2 x x x x x x x x + + − = + − . Vô nghiệm [50] 4sin 2sin 2 1 3 6 x x π π + − − = . Đ/s: ; 3 l lππ π− + [51] ( )2sin 3 cos .cos 2 tan tan 2x x x x x= + . Đ/s: lπ [52] 32 2 cos 2 sin 2 .cos 4sin 0 4 4 x x x x π π + + − + = . Đ/s: 2 ; 2 2 l lππ π− + [53] cos 2 3sin 2 5sin 3cos 3x x x x+ + − = [54] 2cos 4 2cos sin 3 sin 1 3 3 x x x x π π + + − + − = . Đ/s: 2; 2 ; 2 6 30 5 lk lπ π π ππ π+ + − + [55] 217sin 2 16 2 3 sin .cos 20sin 2 2 12 x x x x π π + + = + + . Đ/s: 52 ; 2 2 6 l lπ ππ π+ − + [56] 1sin .cos 2 sin 2 .cos3 sin 5 2 x x x x x= − [57] ) 2 sin(2 cossin 2sin cot 2 1 pi += + + x xx x x . Đ/s: pipi kx += 2 ; .,, 3 2 4 Z∈+= tktx pipi [58] ( )4 44cos 2 sin cos 3 sin(2 ) cos(2 )3 3x x x x x pi pi + = + + + . Đ/s: ( ) 4 2 x k k Zpi pi= + ∈ [59] ( )3 sin 2 sin cos 2 cos 2x x x x+ + − = [60] 2cosx + tanx = 1 + 2sin2x. [61] 83cot tan 8sin 3 x x x pi − = − [62] 2 cos 12(1 sin )(tan 1) sin cos x x x x x − + + = + Đỗ Ngọc Nam_THPT Trung Giã [63] 2 22sin 2sin t anx 4 x x pi − = − [64] 2 os6x+2cos4x- 3 os2x = sin2x+ 3c c [65] 22 os3x.cosx+ 3(1 s in2x)=2 3 os (2 ) 4 c c x pi + + [66] 52 2 os sin 1 12 c x x pi − = [67] 2 3 4 2sin 2 2 3 2(cot 1) sin 2cos x x xx + + − = + . Đ/s: 6 2 x kpi pi= + [68] ( ) ( ) 2cos . cos 1 2 1 sin . sin cos x x x x x − = + + Đ/s: 2 2 x kpi pi= − + và 2x mpi pi= + ( ),k m∈Z [69] cos2x 2sin x 1 2sin x cos 2x 0+ − − = . Đ/s: x kpi= ; 2 6 x kpi pi= + hoặc 5 2 6 x kpi pi= + , k Z∈ [70] 0 10 5cos3 6 3cos5 = −+ + pipi xx . Đ/s: )() 3 2 arccos( 2 1 Zkkx kx ∈ +−±= = ↔ pi pi [71] −=−+ 24 cos2sin 2 cossin 2 sin1 22 x x x x x pi . Đ/s: lπ [72] 2 cos5 .cos 3 sin cos8 x x x x+ = . Đ/s: 72 ; 2 ; 2 , ( ) 2 6 6 x k x k x k k Zpi pi pipi pi pi= + = − + = + ∈ [73] 23tan 3 cot 2 2 tan sin 4 x x x x + = + [74] ( )6 68 sin 3 3 sin 4 3 3 2 9sin 2 11x cos x x cos x x+ + = − + [75] 2cos 3 tan 2 0x x+ + = . Đ/s: 2 ; 2 3 k kππ π π+ − + [76] ( )( )2tan 3 1 2 sin tan 2 cosx x x x+ = + + (đề 21) [77] ( ) ( )2cos 2 1 cos sin 2 sin 3 sin cosx x x x x x− − = + (đề 20) [78] 2 cos 4 sin 2 2 2 sin 3 cos3 sin 3 4 x x x x x pi+ = + + + (đề 16) [79] sin sin sin 4 sin 2 3 3 x x x x pi pi + + + = − (đề 12) [80] ( )2 3cos 2 cos 4 tan 2 .cot 1 4 x x x x+ − = − (đề 9) [81] cos cos 7 3 3 sinx x x− = (đề 8) [82] sin 2 cos 2 2 2 sin 0 4 4 x x x pi pi − − − = (đề 7) [83] ( )( )22 sin 1 sin 2 3sin 1 sin 4 .cosx x x x x+ − + = (đề 6) [84] ( ) ( ) 22 sin cos 1 2sin 2 1 tan sin 3 sin 5 x x x x x x − + = − + (đề 5) [85] ( )2sin 3 cos .cos 2 tan 2 tanx x x x x= + (đề 4) Đỗ Ngọc Nam_THPT Trung Giã [86] 2cos tan 1 2sin 2x x x+ = + (đề 2) [87] ( )3 sin 2 sin cos 2 cos 2x x x x+ + − = (đề 1) [88] 2sin .sin 4 2 2 cos 4 3 cos .sin .cos 2 6 x x x x x x pi = − − (đề 19) [89] sin 3 2cos3 cos 2 2sin 2 2sin 1 0x x x x x+ + − − − = (đề 18) [90] 22cos 2 3tan 1 3 tan .sin 3 x x x x pi + + = + (đề 1.2011) [91] 32 2 sin cos cos 2sin 2 3 8 2 8 2 x x x x pi pi − − − = − (đề 2.11) [92] 6 4 2 16cos 2cos sin 54 51cos x x x x + = − (đề 3.11) hàm số đưa về cos2x. Đ/s: 52 ; 2 6 6 k kpi pipi pi+ + [93] 2 22 sin 1 tan cos 2 4cos 3 2 2 x x x x − = + + . Đ/s: 2 kpi pi+ [94] ( )24sin tan 2 1 tan sin 3 1x x x x+ + + = . Đ/s: 2 3; ; 2 4 20 5 4 kk kpi pi pi pipi pi− + + + [95] 1 12 sin 2 4sin 1 sin 6 2sin x x x x pi − − = − − [96] 2 2 2cos 2cos 3 4 3 sin 0 sin 2 x x x x + − + = . Đ/s: 2 ; 2 3 6 k kpi pipi pi+ + [97] tan tan 2 tan 3 tan 4 0x x x x+ + + = [98] 8sin tan cot 4cot 2 6 x x x x pi + + + = [99] ( ) 23 sin 2 3sin 2cos 3cos 5x x x x− = + − [100] ( )3 sin 2 1 2cos cos3 1 1 2cos cos 2 x x x x x + + = + + [101] 3 4 2 4 x x x x pi pi + = + + sin cot sin cos [102] 4 4 2 2 1 sin cos cos 0 4sin 2 x x x x + − + = . Vô nghiệm. [103] 1sin cos 2 2cos .sin 2 4 2 x x x x pi − + − = . Đặt 2 4 x t pi = − [104] ( ) ( )2 2sin9 cos sin8 cos8 sin2 cos2 0 2 2 x x x x x x+ − − + − = [105] ( )2 2sin9 cos sin8 cos8 2 2 x x x x+ − − = [106] 3 3 sin cos sin cos sin3 cos3 sin cos x x x x x x x x − − = − + Đỗ Ngọc Nam_THPT Trung Giã Bài tập trong đề Bài 1 2 2 2sin tan cos 0 2 4 2 x x x pi − − = Bài 2 ( )( )2cos 1 2sin cos sin 2 sinx x x x x− + = − Bài 3 4 4 3cos sin cos sin 3 0 4 4 2 x x x x pi pi + + − − − = Bài 4 cos3 cos 2 cos 1 0x x x+ − − = Bài 5 ( )2sin cos 3 cos 2 2x x x+ − = Bài 6 ( )2sin 1 cos 2 sin 2 1 2cosx x x x+ + = + Bài 7 3 cos5 2sin 3 .cos 2 sin 0x x x x− − = Bài 8 sin 2 cos 2 3sin cos 1 0x x x x− + − − = Bài 9 2 2 2 2sin 3 cos 4 sin 5 cos 6x x x x− = − Bài 10 2cot tan 4sin 2 sin 2 x x x x − + = Bài 11 ( ) 25sin 2 3 1 sin tanx x x− = − Bài 12 1 sin cos sin 2 cos 2 0x x x x+ − − − = Bài 13 cot sin 1 tan . tan 4 2 x x x x + + = Bài 14 22cos 2 sin 9 sin 1x x x− = + Bài 15 3 3 2 2sin 3 cos sin .cos 3 sin .cosx x x x x x− = − Bài 16 ( )3sin cos .sin 2 3 cos3 2 cos5 sinx x x x x x+ − = + Bài 17 ( )sin 2 cos 2 cos 2 cos 2 sin 0x x x x x+ − − = Bài 18 sin 3 cos35 sin cos 2 3 1 2sin 2 x x x x x + + = + + Bài 19 2cos 2 1cot 1 sin sin 2 1 tan 2 x x x x x − = + − + Bài 20 2 2cos 3 .cos 2 cos 0x x x− = Bài 21 ( )6 62 sin cos sin .cos 0 sin cos x x x x x x + − = − Đỗ Ngọc Nam_THPT Trung Giã Bài 22 ( ) ( )2 21 sin cos 1 cos sin 1 sin 2x x x x x+ − + = − Bài 23 1 1 34sin sin 4 sin 2 x x x pi pi − = + + Bài 24 ( )( )( ) 1 2sin .cos 3 1 2sin 1 sin x x x x − = + − Bài 25 ( )1 sin cos 2 sin cos4 1 tan 2 x x x x x pi + + − = −
File đính kèm:
- TH_LG_DH2012.pdf