Bộ 15 đề và đáp án thi Toán vào ĐH & CĐ
Câu IV (1 điểm):
Cho hình chóp tứ giác S.ABCD có đáy là hình chữ nhật với SA vuông góc với đáy, G là trọng tâm tam giác SAC, mặt phẳng (ABG) cắt SC tại M, cắt SD tại N. Tính thể tích của khối đa diện MNABCD biết SA=AB=a và góc hợp bởi đường thẳng AN và mp(ABCD) bằng 30o
hông thỏa mãn hpt +) y ¹ 0, đặt , t ≥ 0. Hệ phương trình trở thành (*) Û 4t3 – 8t2 + t + 3 = 0 Û t = 1; t = -; t = . Đối chiếu điều kiện ta được t = 1 Từ đó tìm được (x;y) = (9; 4). (HS có thể giải bài toán bằng phương pháp thế hoặc cách khác được kết quả đúng vẫn được điểm tối đa) 0,5 II.2 (2điểm) 2. PT Û 2sin 2x cos 2x + 2cos2 2x = 4(sin x + cos x) 0,5 Û (cos x + sin x) (cos x – sin x) (sin 2x + cos 2x) = 2(sin x + cos x) Û 0,5 Û 0,5 Chứng minh được phương trình cos 3x – sin x = 2 vô nghiệm KL: x = 0,5 III (2điểm) 3. PT Û 1 Ycbt Û (**) có hai nghiệm phân biệt thoả mãn x >- Lập bảng biến thiên của hàm số f(x) = 3x2 – 6x + 1 trong (-;+∞ )ta tìm đươc m Î (-2; ) 1 IV (2điểm) I = = . 0,5 Đặt t = 0,5 Đổi cận : x = 0 Þ t = x = 0,5 I = 0,5 V.1 (2điểm) B Î D1 Û B(a; 3 –a) . C Î D2 Û C(b; 9-b) D ABC vuông cân tại A Û 0,5 Û a = 2 không là nghiệm của hệ trên. 0,5 (1) Û b = . Thế vào (2) tìm được a = 0 hoặc a = 4 0,5 Với a = 0 suy ra b = 4. Với a = 4 suy ra b = 6. 0,5 V.2 (2điểm) 2.Gọi I là trung điểm của AB Þ I ( 1; 1; 1) +) MA2 + MB2 = 2MI2 + IA2 + IB2 Do IA2 + IB2 không đổi nên MA2 + MB2 nhỏ nhất khi MI nhỏ nhất Û M là hình chiếu của I lên mặt phẳng (P) 1 +) Phương trình đường thẳng MI : . 0,5 M là giao điểm của MI và mặt phẳng (P). Từ đó tìm được M(2; 2; 2) 0,5 VI (2điểm) 3. Gọi M là hình chiếu vuông góc của B lên SC. Chứng minh được góc DMB = 1200 và D DMB cân tại M 0,5 Tính được: DM2 = a2 0,5 D SCD vuông tại D và DM là đường cao nên Suy ra DS = a. Tam giác ASD vuông tại A suy ra SA = a. 0,5 Vậy thể tích S.ABCD bằng a3 0,5 VII (1điểm) (***).Do ab + bc + ca = 3 nên VT (***) = = Theo BĐT AM-GM ta có (1) 0,5 Hoàn toàn tương tự ta chứng minh được: (2), (3) Cộng vế với vế của (1), (2), (3) ta được Mặt khác ta dễ dàng chứng minh được : a + b + c ≥ = 3. Đẳng thức xảy ra khi a = b = c = 1 (Đpcm) 0,5 ĐÁP ÁN ĐỀ SỐ 3 PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7.0 điểm) CÂU NỘI DUNG THANG ĐIỂM Câu I (2.0đ) 1. (1.0đ) TXĐ : D = R\{1} 0.25 Chiều biến thiên nên y = 1 là tiệm cận ngang của đồ thị hàm số nên x = 1 là tiệm cận đứng của đồ thị hàm số y’ = 0.25 Bảng biến thiên Hàm số nghịc biến trên và Hàm số không có cực trị 0.25 Đồ thị.(tự vẽ) Giao điểm của đồ thị với trục Ox là (0 ;0) Vẽ đồ thị Nhận xét : Đồ thị nhận giao điểm của 2 đường tiệm cận I(1 ;1) làm tâm đối xứng 0.25 2.(1.0đ) Giả sử M(x0 ; y0) thuộc (C) mà tiếp tuyến với đồ thị tại đó có khoảng cách từ tâm đối xứng đến tiếp tuyến là lớn nhất. Phương trình tiếp tuyến tại M có dạng : 0.25 Ta có d(I ;tt) = Xét hàm số f(t) = ta có f’(t) = 0.25 f’(t) = 0 khi t = 1 Bảng biến thiên từ bảng biến thiên ta c d(I ;tt) lớn nhất khi và chỉ khi t = 1 hay 0.25 + Với x0 = 0 ta có tiếp tuyến là y = -x + Với x0 = 2 ta có tiếp tuyến là y = -x+4 0.25 Câu II(2.0đ) 1. (1.0đ) 4cos5xcosx = 2sinxcosx + 2cos2x 0.25 0.25 0.25 0.25 2.(1.0đ) ĐK : hệ đưa hệ về dạng 0.5 Từ đó ta có nghiệm của hệ (-1 ;-1),(1 ;1), (), () 0.5 Câu III. (1.0đ) 0.25 Ta tính I1 = đặt t = x3 ta tính được I1 = -1/3(cos1 - sin1) 0.25 Ta tính I2 = đặt t = ta tính được I2 = 0.25 Từ đó ta có I = I1 + I2 = -1/3(cos1 - 1)+ 0.25 Câu IV. (1.0đ) Ta có nên 0.25 Tương tự ta có 0.25 Nhân vế với vế của (1), (2), (3) ta được 0.25 vậy Amax = 0.25 Câu V. (1.0đ) Ta có Tương tự ta có SO = OA vậy tam giác SCA vuông tại S. Mặt khác ta có 0.5 Gọi H là hình chiếu của S xuống (CAB) Vì SB = SD nên HB = HD H CO 0.25 Mà Vậy V = 0.25 Câu VIa. (2.0đ) 1. (1.0đ) Gọi A là giao điểm d1 và d2 ta có A(3 ;0) Gọi B là giao điểm d1 với trục Oy ta có B(0 ; - 4) Gọi C là giao điểm d2 với Oy ta có C(0 ;4) 0.5 Gọi BI là đường phân giác trong góc B với I thuộc OA khi đó ta có I(4/3 ; 0), R = 4/3 0.5 2. (1.0đ) Chọn hệ trục toạ độ như hình vẽ Ta có M(1 ;0 ;0), N(0 ;1 ;1) B(2 ;0 ;2), C’(0 ;2 ;2) Gọi phương tình mặt cầu đi qua 4 điểm M,N,B,C’ có dạng x2 + y2 + z2 +2Ax + 2By+2Cz +D = 0 Vì mặt cầu đi qua 4 điểm nên ta có Vậy bán kính R = 1.0 Câu VIIa (1.0đ) Câu VIb (2.0đ) 1. (1.0đ) Đk: x > - 1 0.25 bất phương trình 0.25 0.25 0.25 Giả sử phương trình cần tìm là (x-a)2 + (x-b)2 = R2 0.25 Vì đường tròn đi qua A, B và tiếp xúc với d nên ta có hệ phương trình 0.25 Vậy đường tròn cần tìm là: x2 + (y - 1)2 = 2 0.5 2. (1.0đ) Ta có Vì nên mặt phẳng (P) nhận làm véc tơ pháp tuyến Vậy (P) có phương trình x - 2y + z - 2 = 0 1.0 Câu VIIb (1.0đ) ĐK : Ta có 1.0 ĐÁP ÁN ĐỀ SỐ 4 C©u Néi dung §iÓm I 2.0® 1 1.25® Hµm sè y = cã : - TX§: D = \ {2} - Sù biÕn thiªn: + ) Giíi h¹n : . Do ®ã §THS nhËn ®êng th¼ng y = 2 lµm TCN , . Do ®ã §THS nhËn ®êng th¼ng x = 2 lµm TC§ +) B¶ng biÕn thiªn: Ta cã : y’ = < 0 y’ y x - 2 - 2 2 2 Hµm sè nghÞch biÕn trªn mçi kho¶ng vµ hµm sè kh«ng cã cùc trÞ - §å thÞ + Giao ®iÓm víi trôc tung : (0 ; ) + Giao ®iÓm víi trôc hoµnh : A(3/2; 0) - §THS nhËn ®iÓm (2; 2) lµm t©m ®èi xøng 0,25 0,25 0,25 0,5 2 0,75đ Lấy điểm . Ta có : . Tiếp tuyến (d) tại M có phương trình : Giao điểm của (d) với tiệm cận đứng là : Giao điểm của (d) với tiệm cận ngang là : B(2m – 2 ; 2) Ta có : . Dấu “=” xảy ra khi m = 2 Vậy điểm M cần tìm có tọa độ là : (2; 2) 0,25đ 0,25đ 0,25đ II 2,0® 1 1,0® Phương trình đã cho tương đương với : 2(tanx + 1 – sinx) + 3(cotx + 1 – cosx) = 0 Xét Xét : sinx + cosx – sinx.cosx = 0 . Đặt t = sinx + cosx với . Khi đó phương trình trở thành: Suy ra : 0,25 0,25 0,5 2 1,0® x2 - 4x + 3 = (1) TX§ : D = ®Æt y - 2 = , Ta cã hÖ : 0,25 0,25 0,5 III 1.0® 1® Ta có : = . Đặt Đổi cận : Vậy I2= Nên I = 1 0,5 0,5 IV 2® 1.0® Gọi là góc giữa hai mp (SCB) và (ABC) . Ta có : ; BC = AC = a.cos ; SA = a.sin Vậy Xét hàm số : f(x) = x – x3 trên khoảng ( 0; 1) Ta có : f’(x) = 1 – 3x2 . Từ đó ta thấy trên khoảng (0;1) hàm số f(x) liên tục và có một điểm cực trị là điểm cực đại, nên tại đó hàm số đạt GTLN hay Vậy MaxVSABC = , đạt được khi sin = hay ( với 0 < ) 0,25 0,5 V 1.0® +Ta có : ;; + Lại có : cộng các BĐT này ta được đpcm. 1® VIa 2® 1 1® Đường thẳng AC đi qua điểm (3 ; 1) nên có phương trình : a(x – 3) + b( y – 1) = 0 (a2 + b2 0) . Góc của nó tạo với BC bằng góc của AB tạo với BC nên : 9a2 + 100ab – 96b2 = 0 Nghiệm a = -12b cho ta đường thẳng song song với AB ( vì điểm ( 3 ; 1) không thuộc AB) nên không phải là cạnh tam giác . Vậy còn lại : 9a = 8b hay a = 8 và b = 9 Phương trình cần tìm là : 8x + 9y – 33 = 0 0,25 0,25 0,25 0,25 2 1® Mặt phẳng (P) cắt (d) tại điểm A(10 ; 14 ; 20) và cắt (d’) tại điểm B(9 ; 6 ; 5) Đường thẳng ∆ cần tìm đi qua A, B nên có phương trình : + Đường thẳng (d) đi qua M(-1;3 ;-2) và có VTCP + Đường thẳng (d’) đi qua M’(1 ;2 ;1) và có VTCP Ta có : Do đó (d) và (d’) chéo nhau .(Đpcm) Khi đó : 0,25 0,25 0,25 0,25 VIIa 1đ Chọn khai triển : Hệ số của x5 trong khai triển của (x + 1)5.(x + 1)7 là : Mặt khác : (x + 1)5.(x + 1)7 = (x + 1)12 và hệ số của x5 trong khai triển của (x + 1)12 là : Từ đó ta có : = = 792 .0,25 0,25 0,25 0,25 VIb 2đ 1 1đ Đường tròn (C1) có tâm I1(5 ; -12) bán kính R1 = 15 , Đường tròn (C2) có tâm I2(1 ; 2) bán kính R1 = 5 . Nếu đường thẳng Ax + By + C = 0 (A2 + B2 0) là tiếp tuyến chung của (C1) và (C2) thì khoảng cách từ I1 và I2 đến đường thẳng đó lần lượt bằng R1 và R2 , tức là : Từ (1) và (2) ta suy ra : | 5A – 12B + C | = 3| A + 2B + C | Hay 5A – 12B + C = 3(A + 2B + C) TH1 : 5A – 12B + C = 3(A + 2B + C) C = A – 9B thay vào (2) : |2A – 7B | = 5 Nếu ta chọn B= 21 thì sẽ được A = - 14 , C = Vậy có hai tiếp tuyến : (- 14 )x + 21y = 0 TH2 : 5A – 12B + C = -3(A + 2B + C) , thay vào (2) ta được : 96A2 + 28AB + 51B2 = 0 . Phương trình này vô nghiệm . 0,25 0,25 0,25 0,25 2 1® a) + Đường thẳng (d) đi qua M(0 ;1 ;4) và có VTCP + Đường thẳng (d’) đi qua M’(0 ;-1 ;0) và có VTCP Nhận thấy (d) và (d’) có một điểm chung là hay (d) và (d’) cắt nhau . (ĐPCM) b) Ta lấy . Ta đặt : Khi đó, hai đường phân giác cần tìm là hai đường thẳng đi qua I và lần lượt nhận hai véctơ làm VTCP và chúng có phương trình là : và VIIb 1® ĐK : x > 0 PT đã cho tương đương với : log5( x + 3) = log2x (1) Đặt t = log2x, suy ra x = 2t (2) Xét hàm số : f(t) = f'(t) = Suy ra f(t) nghịch biến trên R Lại có : f(1) = 1 nên PT (2) có nghiệm duy nhất t = 1 hay log2x = 1 hay x =2 Vậy nghiệm của PT đã cho là : x = 2 0,25 0,25 0,25 0,25 ĐÁP ÁN ĐỀ SỐ 5 I.PhÇn dµnh cho tÊt c¶ c¸c thÝ sÝnh C©u §¸p ¸n §iÓm I (2 ®iÓm) 1. (1,25 ®iÓm) a.TX§: D = R\{-2} b.ChiÒu biÕn thiªn +Giíi h¹n: Suy ra ®å thÞ hµm sè cã mét tiÖm cËn ®øng lµ x = -2 vµ mét tiÖm cËn ngang lµ y = 2 0,5 + Suy ra hµm sè ®ång biÕn trªn mçi kho¶ng vµ 0,25 +B¶ng biÕn thiªn x -2 y’ + + 2 y 2 0,25 c.§å thÞ: §å thÞ c¾t c¸c trôc Oy t¹i ®iÓm (0; ) vµ c¾t trôc Ox t¹i ®iÓm(;0) y O 2 -2 §å thÞ nhËn ®iÓm (-2;2) lµm t©m ®èi xøng x 0,25 2. (0,75 ®iÓm) Hoµnh ®é giao ®iÓm cña ®å thÞ (C ) vµ ®êng th¼ng d lµ nghiÖm cña ph¬ng tr×nh Do (1) cã nªn ®êng th¼ng d lu«n lu«n c¾t ®å thÞ (C ) t¹i hai ®iÓm ph©n biÖt A, B 0,25 Ta cã yA = m – xA; yB = m – xB nªn AB2 = (xA – xB)2 + (yA – yB)2 = 2(m2 + 12) suy ra AB ng¾n nhÊt ó AB2 nhá nhÊt ó m = 0. Khi ®ã 0,5 II (2 ®iÓm) 1. (1 ®iÓm) Ph¬ng tr×nh ®· cho t¬ng ®¬ng víi 9sinx + 6cosx – 6sinx.cosx + 1 – 2sin2x = 8 ó 6cosx(1 – sinx) – (2sin2x – 9sinx + 7) = 0 ó 6cosx(1 – sinx) – (sinx – 1)(2sinx – 7) = 0 0,5 ó (1-sinx)(6cosx + 2sinx – 7) = 0 ó 0,25 ó 0,25 2. (1 ®iÓm) §K: BÊt ph¬ng tr×nh ®· cho t¬ng ®¬ng víi ®Æt t = log2x, BPT (1) ó 0,5 0,25 VËy BPT ®· cho cã tËp nghiÖm lµ: III 1 ®iÓm ®Æt tanx = t 0,5 0,5 C©u IV 1 ®iÓm A1 A B C C1 B1 K H Do nªn gãc lµ gãc gi÷a AA1 vµ (A1B1C1), theo gi¶ thiÕt th× gãc b»ng 300. XÐt tam gi¸c vu«ng AHA1 cã AA1 = a, gãc =300 . Do tam gi¸c A1B1C1 lµ tam gi¸c ®Òu c¹nh a, H thuéc B1C1 vµ nªn A1H vu«ng gãc víi B1C1. MÆt kh¸c nªn 0,5 KÎ ®êng cao HK cña tam gi¸c AA1H th× HK chÝnh lµ kho¶ng c¸ch gi÷a AA1 vµ B1C1 0,25 Ta cã AA1.HK = A1H.AH 0,25 C©u V 1 ®iÓm Ta có: P + 3 = Để PMin khi a = b = c = 1 0,5 0,5 PhÇn riªng. 1.Ban c¬ b¶n C©u VIa 2 ®iÓm 1.( 1 ®iÓm) Tõ ph¬ng tr×nh chÝnh t¾c cña ®êng trßn ta cã t©m I(1;-2), R = 3, tõ A kÎ ®îc 2 tiÕp tuyÕn AB, AC tíi ®êng trßn vµ => tø gi¸c ABIC lµ h×nh vu«ng c¹nh b»ng 3 0,5 0,5 2. (1 ®iÓm) Gäi H lµ h×nh chiÕu cña A trªn d, mÆt ph¼ng (P) ®i qua A vµ (P)//d, khi ®ã kho¶ng c¸ch gi÷a d vµ (P) lµ kho¶ng c¸ch tõ H ®Õn (P). Gi¶ sö ®iÓm I lµ h×nh chiÕu cña H lªn (P), ta cã => HI lín nhÊt khi VËy (P) cÇn t×m lµ mÆt ph¼ng ®i qua A vµ nhËn lµm vÐc t¬ ph¸p tuyÕn. 0,5 v× H lµ h×nh chiÕu cña A trªn d nªn lµ vÐc t¬ chØ ph¬ng cña d) VËy (P): 7(x – 10) + (y – 2) – 5(z + 1) = 0 ó 7x + y -5z -77 = 0 0,5 C©u VIIa 1 ®iÓm Tõ gi¶ thiÕt bµi to¸n ta thÊy cã c¸ch chän 2 ch÷ sè ch½n (v× kh«ng cã sè 0)vµ c¸ch chän 2 ch÷ sè lÏ => cã .= 60 bé 4 sè tháa m·n bµi to¸n 0,5 Mçi bé 4 sè nh thÕ cã 4! sè ®îc thµnh lËp. VËy cã tÊt c¶ ..4! = 1440 sè 0,5 2.Ban n©ng cao. C©u VIa 2 ®iÓm 1.( 1 ®iÓm) Tõ ph¬ng tr×nh chÝnh t¾c cña ®êng trßn ta cã t©m I(1;-2), R = 3, tõ A kÎ ®îc 2 tiÕp tuyÕn AB, AC tíi ®êng trßn vµ => tø gi¸c ABIC lµ h×nh vu«ng c¹nh b»ng 3 0,5 0,5 2. (1 ®iÓm) Gäi H lµ h×nh chiÕu cña A trªn d, mÆt ph¼ng (P) ®i qua A vµ (P)//d, khi ®ã kho¶ng c¸ch gi÷a d vµ (P) lµ kho¶ng c¸ch tõ H ®Õn (P). Gi¶ sö ®iÓm I lµ h×nh chiÕu cña H lªn (P), ta cã => HI lín nhÊt khi VËy (P) cÇn t×m lµ mÆt ph¼ng ®i qua A vµ nhËn lµm vÐc t¬ ph¸p tuyÕn. 0,5 v× H lµ h×nh chiÕu cña A trªn d nªn lµ vÐc t¬ chØ ph¬ng cña d) VËy (P): 7(x – 10) + (y – 2) – 5(z + 1) = 0 ó 7x + y -5z -77 = 0 0,5 C©u VIIa 1 ®iÓm Tõ gi¶ thiÕt bµi to¸n ta thÊy cã c¸ch chän 2 ch÷ sè ch½n (kÓ c¶ sè cã ch÷ sè 0 ®øng ®Çu) vµ =10 c¸ch chän 2 ch÷ sè lÏ => cã . = 100 bé 5 sè ®îc chän. 0,5 Mçi bé 5 sè nh thÕ cã 5! sè ®îc thµnh lËp => cã tÊt c¶ ..5! = 12000 sè. MÆt kh¸c sè c¸c sè ®îc lËp nh trªn mµ cã ch÷ sè 0 ®øng ®Çu lµ . VËy cã tÊt c¶ 12000 – 960 = 11040 sè tháa m·n bµi to¸n 0,5 ĐÁP ÁN ĐỀ SỐ 6 C©u Néi dung §iÓm I 2.0® 1 1,25® Víi m = 0 , ta cã : y = x3 – 3x + 1 - TX§: - Sù biÕn thiªn: + ) Giíi h¹n : +) B¶ng biÕn thiªn: Ta cã : y’ = 3x2 – 3 y’ = 0 x = -1 hoÆc x = 1 y’ y x + -1 + 0 0 - 1 3 -1 Hµm sè ®ång biÕn trªn mçi kho¶ng vµ , nghÞch biÕn trªn kho¶ng ( -1; 1) Hµm sè ®¹t cùc ®¹i t¹i ®iÓm x = -1, gi¸ trÞ cùc ®¹i cña hµm sè lµ y(-1) =3 Hµm sè ®¹t cùc tiÓu t¹i ®iÓm x = 1, gi¸ trÞ cùc tiÓu cña hµm sè lµ y(1) =-1 - §å thÞ + §iÓm uèn : Ta cã : y’’ = 6x , y" = 0 t¹i ®iÓm x = 0 vµ y" ®æi dÊu tõ d¬ng sang ©m khi x qua ®iÓm x = 0 . VËy U(0 ; 1) lµ ®iÓm uèn cña ®å thÞ . + Giao ®iÓm víi trôc tung : (0 ;1) y x + §THS ®i qua c¸c ®iÓm : A(2; 3) , B(1/2; -3/8) C(-2; -1) 0,25 0,25 0,25 0,5 2 0.75® §Ó §THS (1) c¾t trôc hoµnh t¹i 3 ®iÓm ph©n biÖt cã hoµnh ®é d¬ng, ta ph¶i cã : (I) Trong ®ã : y’ = 3( x2 – 2mx + m2 – 1) ∆y’ = m2 – m2 + 1 = 1 > 0 víi mäi m y’ = 0 khi x1 = m – 1 = xC§ vµ x2 = m + 1 = xCT . (I) 0,25 0,5 II 2,0® 1 1,0® Ta cã : sin2x – cos2x + 4sinx + 1 = 0 sin2x + 2sin2x + 4 sinx = 0 sinx ( cosx + sinx + 2 ) = 0 sinx = 0 (1) hoÆc cosx + sinx + 2 = 0 (2) + (1) + (2) 0,25 0,5 2 1,0® LÊy (2’) - (1’) ta ®îc : x2 y– xy2 = 6 (3) KÕt hîp víi (1) ta cã : . §Æt y = - z ta cã : ®Æt S = x +z vµ P = xz ta cã : Ta cã : . HÖ nµy cã nghiÖm hoÆc VËy hÖ ®· cho cã 2 nghiÖm lµ : ( 3 ; 2) vµ ( -2 ; -3 ) 0,25 0,25 0,25 0,25 III 1.0® 1® Ta cã ( SAB) ( BCNM) vµ . Tõ S h¹ SH vu«ng gãc víi ®êng th¼ng BM th× SH (BCNM) hay SH lµ ®êng cao cña h×nh chãp SBCNM. MÆt kh¸c : SA = AB.tan600 = a . Suy ra : MA = SA L¹i cã : MN lµ giao tuyÕn cña cña mp(BCM) víi mp(SAD), mµ BC // (SAD) nªn NM // AD vµ MN // BC Do ®ã : V× AD (SAB) nªn MN (SAB) , suy ra MN BM vµ BC BM VËy thiÕt diÖn cña mp(BCM) víi h×nh chãp SABCD lµ h×nh thang vu«ng BCNM . Ta cã : SBCNM = Trong ®ã : BC = 2a , MM vµ BM = = VËy SBCNM = Khi ®ã : VSBCNM = SH. SBCNM TÝnh SH : Ta cã ∆MAB ∆ MHS , suy ra : VËy : VSBCNM = .a. = 0,5 0,5 IV 2® 1 1.0® ®Æt , ta cã dt = hay dt = dx vµ Khi x = 2 th× t = 3 vµ khi x= 6 th× t = 5 Khi ®ã : = = = 0,25 0,5 2 1.0® §Æt t = cos2x th× sin2x = + = t f’(t) f(t) -1 1/3 1 + 0 - 3 1 B¶ng biÕn thiªn Qua b¶ng biÕn thiªn ta cã : miny = vµ maxy = 3 0,25 0,5 Va 3® 1a §êng trßn (C) : ( x – 1)2 + ( y – 3 )2 = 4 cã t©m I ( 1 ; 3) vµ b¸n kÝnh R = 2 . Ta cã : (d) : (d) : x – 2 + y – 4 = 0 (d) : x + y – 6 = 0 0,25 0,5 0,25 1b §êng th¼ng (d) víi hÖ sè gãc k = -1 cã d¹ng : y = -x + m hay x + y – m =0 (1) §êng th¼ng (d) lµ tiÕp tuyÕn cña ®êng trßn (C) kc(I,(d)) = R + VËy cã 2 tiÕp tuyÕn tho¶ m·n ®Ò bµi lµ : x + y – 4 = 0 0,25 0,5 0,25 2 Theo ®Ò ra ta cã : ( ) n2 + 8n – 560 = 0 VËy n = 20 0,25 0,25 0,25 0,25 Vb 3.0 ® 1 Ta cã : [(x2 + x )100]’ = 100(x2 + x )99( 2x +1) (1) vµ (2) Tõ (1) vµ (2) ta thay , ta ®îc 0.25 0.5 0,25 2a (C1) cã t©m I( 2 ; -1) vµ b¸n kÝnh R1= 3 . (C2) cã t©m J(5;3) vµ b¸n kÝnh R=2. Ta cã : IJ2 = ( 5 – 2)2 + ( 3 + 1)2 = 25 IJ = 5 = R1 + R2 Suy ra (C1) vµ (C2) tiÕp xóc ngoµi víi nhau . Täa ®é tiÕp ®iÓm H ®îc x¸c ®Þnh bëi : 0,25 0,25 0,5 2b Cã : §êng trßn (C) qua K , tiÕp xóc víi (C1) , (C2) t¹i H nªn t©m E cña (C) lµ trung ®iÓm cña KH : . B¸n kÝnh (C) lµ EH = 6 Ph¬ng tr×nh cña (C) lµ : 0,5 0,5 ĐÁP ÁN ĐỀ SỐ 7 Hướng dẫn giải Câu I: 2. Giao điểm hai tiệm cận I(- 1;2) . Chuyển hệ trục toạ độ Oxy --> IXY: Hàm số đã cho trở thành : Y = hàm số đồng biến nê (C) đối xứng qua đường thẳng Y = - X Hay y – 2 = - x – 1 Û y = - x + 1 Câu II: 1. Điều kiện: và và cosx ≠ 0 Biến đổi pt về: 4cos3x - 4 cos2x – cosx + 1 = 0 2. Điều kiện 0 < x < 1 hoặc x ≥ 2. Nghiệm: 0 < x < 1 hoặc 2 ≤ x ≤ 4 Câu III: Phương trình tiếp tuyến : y = x + 4 Phương trình hoành độ giao điểm: x3 – 2x2 = 0 V = Câu IV: Gọi M; M’ lần lượt là trung điểm của AB và A’B’. Hạ MH ^ M’C AB // (A’B’C) ==> d(AB,A’C) = MH HC = ; M’C = ; MM’ = Vậy V = Câu V: Đặt f(x) = (2x + 1)[ln(x + 1) – lnx] TXĐ: D = [0;+¥) = Gọi x1; x2 Î [0;+¥) với x1 > x2 Ta có : : f(x) là hàm số tăng Từ phương trình (1) Þ x = y (2) Đặt X = ==> 0 ≤ X < 1 Vậy hệ có nghiêm khi phương trình: X2 – 2X + m = 0 có nghiệm 0 ≤ X < 1 Đặt f(X) = X2 – 2X == > f’(X) = 2X – 2 ==> hệ có nghiêm Û -1 < m ≤ 0 Câu VI.a 1. (C) có tâm O(0;0) bán kính R = 1, (Cm) có tâm I(m +1; -2m) bán kính OI , ta có OI < R’ Vậy (C) và (Cm) chỉ tiếp xuc trong.==> R’ – R = OI ( vì R’ > R) Giải ra m = - 1; m = 3/5 2. Gọi I là tâm của (S) ==> I(1+t;t – 2;t) Ta có d(I,(P)) = AI == > t = 1; t = 7/13 (S1): (x – 2)2 + (y + 1)2 + (z – 1)2 = 1; (S2): (x – 20/13)2 + (y + 19/13)2 + (z – 7/13)2 = 121/139 Câu VII.a Với y = 0 ==> P = 0 Với y ≠ 0 đặt x = ty; ta có: (1) + P = 0 thì phương trình ( 1) có nghiệm t = 3/5 + P ≠ 0 thì phương trình ( 1) có nghiệm khi và chỉ khi D’ = - P2 – 22P + 25 0 Û - 25/3 ≤ P ≤ 1 Từ đó suy maxP , minP Câu VI.b: 1. d1 qua M0(2;3;3) có vectơ chỉ phương d2 qua M1(1;4;3) có vectơ chỉ phương Ta có (d1,d2) : x + y + z – 8 = 0 ==> A Î (d1,d2) B(2 + t;3 + t;3 - 2t); Î d2 ==> t = - 1 ==> M(2;2;4) C( 1+t;4-2t;;3+t) : ==> t = 0 ==> C(1;4;2) 2. (E): , a2 = b2 + 3 ==> P = (a + exM)2 + (a – exM)2 – 2() – (a2 – e2) = 1 Câu VII.b: Ta có: Mà = Vậy S = 22010 ĐÁP ÁN ĐỀ SỐ 8 Câu Nội dung Điểm I-1 Khi m = 1. Ta có hàm số y = - x3 + 3x2 – 4. Tập xác định D = R. Sự biến thiên. Chiều biến thiên. y’ = - 3x2 + 6x , y’ = 0 Û x = 0 v x = 2. y’> 0 " x Î( 0;2). Hàm số đồng biến trên khoảng ( 0; 2). y’ < 0 " x Î(- ∞; 0) È (2; +∞).Hàm số nghịch biến trên các khoảng (- ∞;0) và (2; +∞). 0,25 Cực trị. Hàm số đạt cực đại tại x = 2, yCĐ = y(2) = 0. Hàm số đạt cực tiểu tại x = 0, yCT = y(0) = - 4. Giới hạn. .Đồ thị hàm số không có tiệm cận. 0,25 Tính lồi, lõm và điểm uốn. y’’ = - 6x +6 , y’’ = 0 Û x = 1. x -∞ 1 +∞ y’’ + 0 - Đồ thị Lõm Điểm uốn Lồi I(1; - 2) Bảng biến thiên. x -∞ 0 1 2 +∞ y’ - 0 + 0 - y +∞ 0 (I) - 2 - 4 -∞ 0,25 Đồ thị. Đồ thị hàm số cắt trục Ox tai các điểm (- 1; 0) , (2; 0). Đồ thị hàm số cắt trục Oy tai điểm (0 ; -4). Đồ thị hàm số có tâm đối xứng là điểm uốn I(1;- 2). Hệ số góc của tiếp tuyến tại điểm uốn là k = y’(1) = 3. 0,25 I-2 Ta có y’ = - 3x2 + 6mx ; y’ = 0 Û x = 0 v x = 2m. Hàm số có cực đại , cực tiểu Û phương trình y’ = 0 có hai nghiệm phân biệt Û m ¹ 0. 0,25 Hai điểm cực trị là A(0; - 3m - 1) ; B(2m; 4m3 – 3m – 1) Trung điểm I của đoạn thẳng AB là I(m ; 2m3 – 3m – 1) Vectơ ; Một vectơ chỉ phương của đường thẳng d là . 0,25 Hai điểm cực đại , cực tiểu A và B đối xứng với nhau qua đường thẳng d Û 0,25 Û Û m = 2 0,25 II-1 Tập xác định D = R. Phương trình đã cho tương đương với 0,25 Û Û 0,25 Û Û 0,25 Û 0,25 II-2 Điều kiện: 0,25 Phương trình đã cho tương đương với Û . (1) Đặt t = ; Khi x Î [ - 2; 4) thì t Î [ 0; 3] . (2) Phương trình trở thành : - t2 – mt + 2t – 6 – m = 0 Û . 0,25 Xét hàm số ; f’(t) = ; f’(t) = 0 Û t = - 4 v t = 2. Bảng biến thiên của hàm số f(t) trên đoạn [ 0 ; 3 ]. t -∞ -4 -1 0 2 3 +∞ f’(t) - 0 + + + 0 - f(t) - 2 -6 0,25 Phương trình đx cho có nghiệm x Î [ - 2; 4) Û Phương trình (2) có nghiệm t Î [ 0; 3 ] Û Đường thẳng y = m cắt đồ thị hàm số f(t) , t Î [ 0; 3 ] Û - 6 ≤ m ≤ - 2 0,25 III-1 Đường thẳng D1 có một vectơ chỉ phương , Điểm M º O(0; 0; 0) Î D1. 0,25 Đường thẳng D2 có một vectơ chỉ phương , điểm N(1;-1;1) Î D2. 0,25 Ta có ; . 0,25 Ta có . Suy ra hai đường thẳng D1 và D2 chéo nhau. 0,25 III -2 Phương trình đường thẳng D2 : . 0,25 Phương trình mặt phẳng (P) chứa đường thẳng D2 có dạng l(x + y) + m(3y + z + 2) = 0 với
File đính kèm:
- BO 15 DE THI TOAN VAO DAI HOC VA CD.doc