Bộ đề thi tốt nghiệp môn Toán

I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH.(7 điểm)

Câu I.(3 điểm) Cho hàm số y = 2 1

1

+ -

x

x

có đồ thị (C).

1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.

2/ Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục tung.

Câu II. (3 điểm)

1/ Giải phương trình : log3(x + 1) + log3(x + 3) = 1.

2/ Tính I =

2

3

0

cos .

p ò

x dx .

3/ Xét sự đồng biến và nghịch biến của hàm số y = -x3 + 3x -1

Câu III. (1 điểm). Cho hình chóp S.ABC có ABC là tam giác vuông cân tại B, AC = a , SA ^ ( ) ABC , góc giữa

cạnh bên SB và đáy bằng 600. Tính thể tích của khối chóp

pdf38 trang | Chia sẻ: minhanh89 | Lượt xem: 620 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Bộ đề thi tốt nghiệp môn Toán, để xem tài liệu hoàn chỉnh bạn hãy click vào nút TẢi VỀ
ầu (S) với các trục Ox ; Oy ; Oz. Tìm 
toạ độ A ; B ; C. Viết phương trình mặt phẳng (ABC). 
Câu V.a: (1điểm) 
 Giải phương trình sau trên tập số phức: z2 + 4z + 10 = 0 
2. Theo chương trình nâng cao: 
Câu IV.b: (2 điểm) 
 Trong không gian Oxyz cho đường thẳng (D): 2 1 1
2 3 5
- + -
= =
x y z
 và mặt phẳng (P): 2x + y + z – 8 = 0. 
 1/ Chứng tỏ đường thẳng (D) không vuông góc mp (P). Tìm giao điểm của đường thẳng (D) và mặt phẳng 
(P). 
 2/ Viết phương trình đường thẳng (D’) là hình chiếu vuông góc của đường thẳng (D) lên mặt phẳng (P). 
Câu V.b: (1điểm) 
 Giải phương trình sau trên tập số phức: (z + 2i)2 + 2(z + 2i) – 3 = 0. 
ĐỀ 26 
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7đ): 
Câu I (3đ): 
1. Khảo sát và vẽ đồ thị (C) của hàm số 3
1
+
=
+
x
y
x
ĐỀ ÔN THI TỐT NGHIỆP THPT 2010 – WWW.MATHVN.COM 
72 ĐỀ 2010  
15 
2. CMR với mọi giá trị của m, đường thẳng (d) y = 2x + m luôn cắt (C) tại 2 điểm phân biệt. 
3. Gọi A là giao điểm của (C) với trục Ox. Viết phương trình tiếp tuyến của (C) tại A. 
Câu II (3đ): 1. Giải phương trình: 32 log3 81- =x x 
1) Tìm giá trị lớn nhất và giá rị nhỏ nhất của hàm số: y = 2sin2x + 2sinx – 1 
Câu III (1đ): 
Cho tứ diện SABC có cạnh SA vuông góc với mặt phẳng (ABC) và có SA = a, AB = b, AC = c và 
· 090=BAC . Tính diện tích mặt cầu và thể tích khối cầu ngoại tiếp tứ diện SABC. 
PHẦN RIÊNG (3đ): 
1.Theo chương trình chuẩn: 
Câu IV.a (2đ): 
 Trong không gian Oxyz. Cho điểm M(-3;1;2) và mặt phẳng (P) có phương trình: 2x + 3y + z – 13 = 0 
1) Hãy viết phương trình đường thẳng (d) đi qua M và vuông góc với mặt phẳmg (P). Tìm tọa độ giao điểm H 
của đường thẳng (d) và mặt phẳng (P). 
2) Hãy viết phương trình mặt cầu tâm M có bán kính R = 4. Chứng tỏ mặt cầu này cắt mặt phẳng (P) theo giao 
tuyến là 1 đường tròn. 
Câu V.a (1đ): 
Tính diện tích hình phẳng giới hạn bởi các đường (P): y = 4 – x2, (d): y = -x + 2 
2.Theo chương trình Nâng cao: 
Câu IV.b (2đ): 
 Trong không gian Oxyz cho 4 điểm A(-2;1;2), B(0;4;1), C(5;1;-5), D(-2;8;-5) và đường thẳng d: 
5 11 9
3 5 4
+ + -
= =
-
x y z
. 
1) Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD. 
2) Tìm tọa độ giao điểm M, N của (d) với mặt cầu (S). 
3) Viết phương trình các mặt phẳng tiếp xúc với mặt cầu (S) tại M,N 
Câu V.b (1đ): Tính diện tích hình phẳng giới han bởi các đường (P): y = x2 + 1, tiếp tuyến của (P) tại M(2;5) và trục 
Oy 
ĐỀ 27 
CâuI: ( 3 điểm) 
 1/Khảo sát sự biến thiên và vẽ đồ thị(C ) của hàm số y= -x 3 +3x 2 -3x+2. 
 2/Tính diện tích hình phẳng giới hạn bởi (C ) và 2 trục tọa độ. 
Câu II: (3 điểm) 
1/Cho hàm số y= xsinx .Chứng minh rằng : xy-2 ( )' sin-y x +xy’’=0 
 2/Giải phương trình: log 3 ( )3 1-x .log 3 ( )13 3+ -x = 6. 
 3/Tính I=
3
3 2
0
1+ò x x dx 
Câu III( 2 điểm) 
 Trong không gian Oxyz cho 2 mặt phẳng(a ) và ( 'a ) có phương trình: ( )a :2x-y+2z-1=0 và 
(a ’):x+6y+2z+5=0 
 1/Chứng tỏ 2 mặt phẳng đã cho vuông góc với nhau. 
 2/Viết phương trình mặt phẳng( b ) đi qua gốc tọa độ và giao tuyến của 2 mặt phẳng(a ) , ( 'a ) 
Câu IV: (1 điểm): 
Cho khối hộp ABCD.A’B’C’D’ có thể tích 2009 cm 3 .Tính thể tích khối tứ diện C’ABC 
Câu V:( 1 điểm) Tính môđun của số phức z biết Z = ( )2 3- i 1 3
2
æ ö+ç ÷
è ø
i 
ĐỀ 28 
I. PHẦN CHUNG (7,0 điểm ) 
Câu 1 ( 3,0 điểm ) Cho hàm số 3 22 3 2= - + -y x x có đồ thị (C) 
1. Khảo sát sự biến thiên và vẽ đồ thị (C). 
2. Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ 2= -ox . 
Câu 2 ( 3,0 điểm ) 
ĐỀ ÔN THI TỐT NGHIỆP THPT 2010 – WWW.MATHVN.COM 
72 ĐỀ 2010  
16 
1. Giải phương trình 13 18.3 29+ -+ =x x . 2. Tính tích phân 
2
0
cos
p
= òI x xdx 
3. Tìm GTLN, GTNN của hàm số 29 7= -y x trên đoạn [-1;1]. 
 Câu 3 ( 1,0 điểm ) Cho tứ diện đều ABCD có cạnh bằng 
2
a
1. Tính chiều cao của tứ diện ABCD. 
2. Tính thể tích của tứ diện ABCD. 
II. PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm ) 
 Câu 4a ( 2,0 điểm ) Cho bốn điểm A(1;0;0), B(0;1;0), C(0;0;1), D(-2;1;-1) 
1. Chứng minh A, B, C, D là bốn đỉnh của một tứ diện. 
2. Tính thể tích của tứ diện đó. 
3. Lập phương trình mặt cầu ngoại tiếp tứ diện ABCD. 
 Câu 5a ( 1,0 điểm ) Giải phương trình 2 7 0+ + =x x trên tập số phức. 
ĐỀ 29 
I. PHẦN CHUNG (7,0 điểm ) 
Câu 1 ( 3,0 điểm ) Cho hàm số 3 23 4= + -y x x có đồ thị (C) 
1.Khảo sát sự biến thiên và vẽ đồ thị (C). 
2.Viết phương trình tiếp tuyến của (C) tại tâm đối xứng. 
Câu 2 ( 3,0 điểm ) 
1.Giải phương trình 6 33. 2 0- + =x xe e . 
2.Tính tích phân 
2
2
0
sin 2 .sin
p
= òI x xdx 
3.Tìm GTLN, GTNN của hàm số 3 22 3 12 10= - - +y x x x trên đoạn [-3;3]. 
 Câu 3 ( 1,0 điểm ) 
 Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 
2
a
, cạnh bên bằng a 
1.Tính chiều cao của hình chóp S. ABC. 
2.Tính thể tích của hình chóp S.ABC. 
II. PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm ) 
 Câu 4a ( 2,0 điểm ) Cho mặt cầu (S) có đường kính AB, biết A(6;2;-5), B(-4;0;7). 
1. Lập phương trình mặt cầu (S). 
2. Lập phương trình mặt phẳng (P) tiếp xúc mặt cầu (S) tại điểm A. 
 Câu 5a ( 1,0 điểm ) Giải phương trình 22 7 0+ + =x x trên tập số phức. 
ĐỀ 30 
I. PHẦN CHUNG (7,0 điểm ) 
Câu 1 ( 3,0 điểm ) Cho hàm số 3 23 4= - + -y x x có đồ thị (C) 
 1.Khảo sát sự biến thiên và vẽ đồ thị (C). 
 2.Dùng đồ thị (C), biện luận theo m số nghiệm của phương trình 
 3 23 4- + = +x x m . 
Câu 2 ( 3,0 điểm ) 
 1.Giải phương trình 94 log log 3 3+ =xx . 
 2.Tính tích phân 
1
0
ln(1 )= +òI x dx 
 3.Tìm GTLN, GTNN của hàm số 5 4= -y x trên đoạn [-1;1]. 
Câu 3 ( 1,0 điểm ) 
ĐỀ ÔN THI TỐT NGHIỆP THPT 2010 – WWW.MATHVN.COM 
72 ĐỀ 2010  
17 
 Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh bên SA vuông góc với mặt phẳng đáy. SA = 
3a, SB = 5a, AD = a 
 1.Tính độ dài AB. 
 2.Tính thể tích của hình chóp S.ABCD. 
II. PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm ) 
Câu 4a ( 2,0 điểm ) Cho bốn điểm A(-2;6;3), B(1;0;6), C(0;2;-1), D(1;4;0) 
 1. Viết phương trình mặt phẳng (BCD). Suy ra ABCD là một tứ diện. 
 2. Tính chiều cao AH của tứ diện ABCD. 
 3. Viết phương trình mặt phẳng (Q) chứa AB và song song với CD. 
Câu 5a ( 1,0 điểm ) Giải phương trình 2 5 0+ + =x x trên tập số phức. 
ĐỀ 31 
I.PHẦN CHUNG (7,0 điểm ) 
Câu 1 ( 3,0 điểm ) Cho hàm số 3 23 1= + +y x x có đồ thị (C) 
1.Khảo sát sự biến thiên và vẽ đồ thị (C). 
2.Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ 2= -ox . 
Câu 2 ( 3,0 điểm ) 
1.Giải bất phương trình 
2 4 6
1 1
3 27
- +
æ ö ³ç ÷
è ø
x x
. 
2.Tính tích phân 2
1
ln= ò
e
I x xdx 
3.Tìm GTLN, GTNN của hàm số 1-= xy
x
 trên đoạn [-2;-1]. 
 Câu 3 ( 1,0 điểm ) 
 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. 
( )^SA ABCD .SA =
2
a
, AB = 2a, AD = 5a, góc BAD có số đo 30o 
Tính thể tích của hình chóp S.ABCD. 
II. PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm ) 
 Câu 4a ( 2,0 điểm ) Cho mặt phẳng ( ) : 3 5 2 0a + - - =x y z và đường thẳng 
12 4
( ) : 9 3
1
= +ì
ï = +í
ï = +î
x t
d y t
z t
. 
1. Tìm giao điểm M của đường thẳng (d) và mặt phẳng ( )a . 
2. Viết phương trình mặt phẳng ( )b chứa điểm M và vuông góc với đường thẳng (d). 
 Câu 5a ( 1,0 điểm ) Giải phương trình 2 2 7 0+ + =x x trên tập số phức. 
ĐỀ 32 
 I.PHẦN CHUNG (7,0 điểm ) 
Câu 1 ( 3,0 điểm ) Cho hàm số 3 23 1= - + +y x x có đồ thị (C) 
1.Khảo sát sự biến thiên và vẽ đồ thị (C). 
2.Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ 1= -ox . 
ĐỀ ÔN THI TỐT NGHIỆP THPT 2010 – WWW.MATHVN.COM 
72 ĐỀ 2010  
18 
Câu 2 ( 3,0 điểm ) 
1.Giải phương trình log( 1) log(2 11) log 2- - - =x x . 
2.Tính tích phân 
ln 3
3
0 ( 1)
=
+
ò
x
x
e
I dx
e
3.Tìm GTLN, GTNN của hàm số 3 21 2 3 4
3
= + + -y x x x trên đoạn [-4;0]. 
 Câu 3 ( 1,0 điểm ) 
 Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 
2
a
, cạnh bên bằng 3a 
1.Tính chiều cao của hình chóp S.ABCD. 
2.Tính thể tích của hình chóp S.ABCD. 
II. PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm ) 
 Câu 4a ( 2,0 điểm ) Cho hai đường thẳng 1
1
( ) : 2 2
3
= -ì
ï = +í
ï =î
x t
d y t
z t
 và 
/
/
2
1
( ) : 3 2
1
ì = +
ï = -í
ï =î
x t
d y t
z
. 
Chứng minh rằng (d1) và (d2) chéo nhau. 
 Câu 5a ( 1,0 điểm ) Giải phương trình 22 3 7 0+ + =x x trên tập số phức. 
ĐỀ 33 
I. PHẦN CHUNG (7,0 điểm ) 
Câu 1 ( 3,0 điểm ) Cho hàm số 3 23 4= + -y x x có đồ thị (C) 
1.Khảo sát sự biến thiên và vẽ đồ thị (C). 
2.Viết phương trình tiếp tuyến của (C) tại điểm có tọa độ ( 1; 2)- - . 
Câu 2 ( 3,0 điểm ) 
1.Giải phương trình 16 17.4 16 0- + =x x . 
2.Tính tích phân 
2
3
2
2
( 1) -= -ò x xI x e dx 
3.Tìm GTLN, GTNN của hàm số 1= +y x
x
 trên khoảng ( 0 ; +∞ ). 
 Câu 3 ( 1,0 điểm ) 
 Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Cạnh bên SA vuông góc với mặt phẳng đáy. SB = 
5a, AB = 3a , AC= 4a. 
1.Tính chiều cao của S.ABCD. 
2.Tính thể tích của S.ABCD. 
II. PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm ) 
 Câu 4a ( 2,0 điểm ) Cho mặt cầu 2 2 2( ) : 10 2 26 170 0+ + - + + + =S x y z x y z . 
1. Tìm toạ độ tâm I và độ dài bán kính r của mặt cầu (S). 
2. Lập phương trình đường thẳng (d) qua điểm I vuông góc với mặt phẳng ( ) : 2 5 14 0a - + - =x y z . 
 Câu 5a ( 1,0 điểm ) Giải phương trình 22 4 7 0- + =x x trên tập số phức. 
ĐỀ 34 
I.PHẦN CHUNG (7,0 điểm ) 
Câu 1 ( 3,0 điểm ) Cho hàm số 3 26 9= - +y x x x có đồ thị (C) 
1.Khảo sát sự biến thiên và vẽ đồ thị (C). 
2.Viết phương trình tiếp tuyến của (C) tại điểm cực đại của nó. 
Câu 2 ( 3,0 điểm ) 
1.Giải phương trình 1 39 4.3 3 0+- + =x x . 
2.Tính tích phân 
ln 5 2
ln 2 1
=
-
ò
x
x
e
I dx
e
3.Tìm GTLN, GTNN của hàm số 3 28 16 9= - + -y x x x trên đoạn [1;3]. 
 Câu 3 ( 1,0 điểm ) 
 Cho tứ diện đều ABCD có cạnh bằng 3
2
a
ĐỀ ÔN THI TỐT NGHIỆP THPT 2010 – WWW.MATHVN.COM 
72 ĐỀ 2010  
19 
1.Tính chiều cao của tứ diện ABCD. 
2.Tính thể tích của tứ diện ABCD. 
II. PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm ) 
 Câu 4a ( 2,0 điểm ) Cho ba điểm A(1;0;-1), B(1;2;1), C(0;2;0). Gọi G là trọng tâm tam giác ABC. 
1. Viết phương trình đường thẳng OG. 
2. Viết phương trình mặt cầu (S) đi qua bốn điểm O, A, B, C. 
3. Viết phương trình các mặt phẳng vuông góc với đường thẳng OG và tiếp xúc với mặt cầu (S). 
 Câu 5a ( 1,0 điểm ) Giải phương trình 2 3 9 0- + =x x trên tập số phức. 
ĐỀ 35 
I.PHẦN CHUNG (7,0 điểm ) 
Câu 1 ( 3,0 điểm ) Cho hàm số 3 3= -y x x có đồ thị (C) 
1.Khảo sát sự biến thiên và vẽ đồ thị (C). 
2.Dùng (C), tìm các giá trị của m để phương trình sau có ba nghiệm thực 3 3 2 0- + - =x x m . 
Câu 2 ( 3,0 điểm ) 
1.Giải phương trình 2 2 3-+ =x x . 
2.Tính tích phân 
1
2
0
ln(1 )= +òI x x dx 
3.Tìm GTLN, GTNN của hàm số 
4
2 3
2 2
= - - +
x
y x trên đoạn [-1/2;2/3]. 
 Câu 3 ( 1,0 điểm ) 
 Cho tứ diện đều ABCD có cạnh bằng 2
3
b
1.Tính chiều cao của tứ diện ABCD. 
2.Tính thể tích của tứ diện ABCD. 
II. PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm ) 
 Câu 4a ( 2,0 điểm ) Cho đường thẳng 2 1 1( ) :
1 2 3
- + -
= =
x y z
d và mặt phẳng ( ) : 3 2 0a - + + =x y z . 
1. Tìm toạ độ giao điểm M của đường thẳng (d) và mặt phẳng ( )a . 
2. Viết phương trình mặt phẳng chứa (d) và vuông góc với mặt phẳng ( )a . 
 Câu 5a ( 1,0 điểm ) Giải phương trình 2 5 0+ + =x x trên tập số phức. 
ĐỀ 36 
I. PHẦN CHUNG (7,0 điểm ) 
Câu 1 ( 3,0 điểm ) Cho hàm số 3 23 4 2= - + - +y x x x có đồ thị (C) 
1.Khảo sát sự biến thiên và vẽ đồ thị (C). 
2.Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ 1= -ox . 
Câu 2 ( 3,0 điểm ) 
1.Giải phương trình 1 15 5 24+ -- =x x . 
2.Tính tích phân 
2
5
1
(1 )= -òI x x dx 
3.Tìm GTLN, GTNN của hàm số 
2 3 6
1
- +
=
-
x x
y
x
 trên khoảng (1 ; +∞ ). 
 Câu 3 ( 1,0 điểm ) 
 Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 
2
b
, cạnh bên bằng 2b 
1.Tính chiều cao của S.ABCD. 
2.Tính thể tích của S.ABCD. 
II. PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm ) 
 Câu 4a ( 2,0 điểm ) Cho mặt phẳng ( ) : 2 4 0a + - - =x y z và điểm 
M(-1;-1;0). 
1. Viết phương trình mặt phẳng ( )b qua M và song song với ( )a . 
2. Viết phương trình đường thẳng (d) qua M và vuông góc với ( )a . 
3. Tìm toạ độ giao điểm H của (d) và ( )a . 
 Câu 5a ( 1,0 điểm ) Giải phương trình 2 2 0+ + =x x trên tập số phức. 
ĐỀ ÔN THI TỐT NGHIỆP THPT 2010 – WWW.MATHVN.COM 
72 ĐỀ 2010  
20 
ĐỀ 37 
I.PHẦN CHUNG (7,0 điểm ) 
Câu 1 ( 3,0 điểm ) Cho hàm số 3 22 3 1= - + -y x x có đồ thị (C) 
1.Khảo sát sự biến thiên và vẽ đồ thị (C). 
2.Viết phương trình tiếp tuyến của (C) tại điểm cực đại của nó. 
Câu 2 ( 3,0 điểm ) 
1.Giải phương trình 21 2
2
log log 2+ =x x . 
2.Tính tích phân 
3
1
2 ln= òI x xdx 
3.Tìm GTLN, GTNN của hàm số 3 3 1= - +y x x trên đoạn [0;2]. 
 Câu 3 ( 1,0 điểm ) 
 Cho hình chóp đều S. ABC có cạnh SA = AB = 3
2
1.Tính chiều cao của S.ABC. 
2.Tính thể tích của S.ABC. 
II. PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm ) 
 Câu 4a ( 2,0 điểm ) Cho bốn điểm A(1;-1;2), B(1;3;2), C(4;3;2), D(4;0;0) 
1. Lập phương trình mặt phẳng (BCD). Từ đó suy ra ABCD là một tứ diện. 
2. Tính thể tích tứ diện. 
3. Lập phương trình mặt phẳng ( )a qua gốc toạ độ và song song mặt phẳng (BCD). 
 Câu 5a ( 1,0 điểm ) Giải phương trình 22 2 0+ + =x x trên tập số phức. 
ĐỀ 38 
I.PHẦN CHUNG (7,0 điểm ) 
Câu 1 ( 3,0 điểm ) Cho hàm số 3 23 4= - + -y x x có đồ thị (C) 
1.Khảo sát sự biến thiên và vẽ đồ thị (C). 
2.Tính diện tích hình phẳng giới hạn bởi đồ thị (C) , trục hoành và hai đường thẳng x = 0 và x =1. 
Câu 2 ( 3,0 điểm ) 
1.Giải bất phương trình 
2 3
1
4
2
-
æ ö ³ç ÷
è ø
x x
. 
2.Tính tích phân 
1
2
0
-= ò xI x e dx 
3.Tìm GTLN, GTNN của hàm số 3 23 9 35= - - +y x x x trên đoạn [-4;4]. 
 Câu 3 ( 1,0 điểm ) 
 Cho hình chóp S. ABC có đáy ABC là tam giác vuông tại A. Cạnh bên SA vuông góc với mặt phẳng đáy. 
SA = AB = 2a, BC = 3a 
Tính thể tích của S.ABC. 
II. PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm ) 
 Câu 4a ( 2,0 điểm ) Cho bốn điểm A(0;-1;1), B(1;-3;2), C(-1;3;2), D(0;1;0) 
1. Lập phương trình mặt phẳng (ABC). Từ đó suy ra ABCD là một tứ diện 
2. Lập phương trình đường thẳng (d) qua trọng tâm G của tam giác ABC và đi qua gốc tọa độ. 
 Câu 5a ( 1,0 điểm ) Giải phương trình 2 9 0+ + =x x trên tập số phức. 
ĐỀ 39 
I.PHẦN CHUNG (7,0 điểm ) 
Câu 1 ( 3,0 điểm ) Cho hàm số 3 23 2= + -y x x có đồ thị (C) 
1.Khảo sát sự biến thiên và vẽ đồ thị (C). 
2.Tính diện tích hình phẳng giới hạn bởi đồ thị (C) , trục hoành và hai đường thẳng 
x = -2 và x =-1. 
Câu 2 ( 3,0 điểm ) 
1.Giải bất phương trình 
2 3
2 9
1
3 25
-
æ ö ³ç ÷
è ø
x x
ĐỀ ÔN THI TỐT NGHIỆP THPT 2010 – WWW.MATHVN.COM 
72 ĐỀ 2010  
21 
2.Tính tích phân 
2
sin
0
.cos
p
= ò xI e xdx 
3.Tìm GTLN, GTNN của hàm số 3 22 3 1= + -y x x trên đoạn 12;
2
é ù- -ê úë û
 Câu 3 ( 1,0 điểm ) 
 Cho hình chóp S. ABC có đáy ABC là tam giác vuông tại B. Cạnh bên SA vuông góc với mặt phẳng đáy. 
SA = AB = 2a, BC = 3a 
Tính thể tích của S.ABC. 
II. PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm ) 
 Câu 4a ( 2,0 điểm ) Cho điểm A(0;-1;1) và mặt phẳng ( ) : 2 3 7 0a + - - =x y z 
1. Lập phương trình đường thẳng (d) chứa A và vuông góc với mặt phẳng ( )a . 
2. Tính khoảng cách từ A đến mặt phẳng ( )a . 
Câu 5a ( 1,0 điểm ) Giải phương trình 2 8 0+ + =x x trên tập số phức. 
ĐỀ 40 
I.PHẦN CHUNG (7,0 điểm ) 
Câu 1 ( 3,0 điểm ) Cho hàm số 3 3 4= + -y x x có đồ thị (C) 
1.Khảo sát sự biến thiên và vẽ đồ thị (C). 
2.Viết phương trình tiếp tuyến của (C) tai diểm có hoành độ xo là nghiệm của phương trình // ( ) 6=oy x 
Câu 2 ( 3,0 điểm ) 
1.Giải phương trình 25 6.5 5 0- + =x x . 
2.Tính tích phân 
1
ln= ò
e
I x xdx 
3.Giải bất phương trình 20,2 0,2log 5log 6- £ -x x 
 Câu 3 ( 1,0 điểm ) 
 Cho hình chóp S. ABC có đáy ABC là tam giác vuông tại C. Cạnh bên SA vuông góc với mặt phẳng đáy. 
SA = AB = 5a, BC = 3a 
Tính thể tích của S.ABC. 
II. PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm ) 
 Câu 4a ( 2,0 điểm ) Cho ba điểm A(1;0;4), B(-1;1;2), C(0;1;1) 
1. Chứng minh tam giác ABC vuông. 
2. Lập phương trình đường thẳng (d) qua trọng tâm G của tam giác ABC và đi qua gốc tọa độ. 
 Câu 5a ( 1,0 điểm ) Tính giá trị biểu thức: 
2
2
( 3 )
( 3 )
+
=
-
i
P
i
ĐỀ 41 
I.PHẦN CHUNG (7,0 điểm ) 
Câu 1 ( 3,0 điểm ) Cho hàm số 4 22 2= - + -y x x có đồ thị (C) 
1.Khảo sát sự biến thiên và vẽ đồ thị (C). 
2.Dùng đồ thị (C), biện luận theo m số nghiệm của phương trình 
 4 22 2- + - =x x m 
Câu 2 ( 3,0 điểm ) 
1.Giải phương trình 
2
2 2
6 4
3
log 2 log
+ =
x x
. 
2.Tính tích phân 
3
2
0
4
1
=
+
ò
x
I dx
x
3.Tính giá trị biểu thức 2009 2009log(2 3) log(2 3)= + + -A 
 Câu 3 ( 1,0 điểm ) 
 Cho hình chóp S. ABC có đáy ABC là tam giác vuông tại A. Cạnh bên SB vuông góc với mặt phẳng đáy. 
SA = 5a, AB = 2a, BC = 3a 
Tính thể tích của S.ABC. 
II. PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm ) 
ĐỀ ÔN THI TỐT NGHIỆP THPT 2010 – WWW.MATHVN.COM 
72 ĐỀ 2010  
22 
 Câu 4a ( 2,0 điểm ) Cho hai điểm A(1;2;-1), B(7;-2;3) và đường thẳng 
1 3
( ) : 2 2
2 2
= - +ì
ï = -í
ï = +î
x t
d y t
z t
1. Lập phương trình đường thẳng AB. 
2. Chứng minh đường thẳng AB và đường thẳng (d) cùng nằm trong một mặt phẳng. 
 Câu 5a ( 1,0 điểm ) Giải phương trình 22 9 0+ + =x x trên tập số phức. 
ĐỀ 42 
I.PHẦN CHUNG (7,0 điểm ) 
Câu 1 ( 3,0 điểm ) Cho hàm số 3 21 2
3
= + -y x x có đồ thị (C) 
1.Khảo sát sự biến thiên và vẽ đồ thị (C). 
2.Viết phương trình tiếp tuyến của (C) tại tâm đối xứng của nó. 
Câu 2 ( 3,0 điểm ) 
1.Giải phương trình 2 4log log ( 3) 2- - =x x . 
2.Tính tích phân 
2
2
1
3= +òI x x dx 
3.Tìm GTLN, GTNN của hàm số 3 23 7 1= - - +y x x x trên đoạn [0;3]. 
 Câu 3 ( 1,0 điểm ) 
 Cho hình chóp S. ABC có đáy ABC là tam giác vuông tại C. Cạnh bên SA vuông góc với mặt phẳng đáy. 
SA = BC, biết CA = 3a, BA = 5a 
Tính thể tích của S.ABC. 
II. PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm ) 
 Câu 4a ( 2,0 điểm ) Cho ba điểm A(0;2;1), B(3;0;1), C(1;0;0) 
1. Lập phương trình mặt phẳng (ABC). 
2. Lập phương trình đường thẳng (d) qua M(1;-2;1/2) và vuông góc mặt phẳng (ABC). 
3. Tính khoảng cách từ điểm M đến mặt phẳng (ABC). 
 Câu 5a ( 1,0 điểm ) Tính giá trị của biểu thức 
2
5 3 3
1 2 3
æ ö+
= ç ÷ç ÷-è ø
i
P
i
ĐỀ 43 
I.PHẦN CHUNG (7,0 điểm ) 
Câu 1 ( 3,0 điểm ) Cho hàm số 4 21
4
= - +y x x có đồ thị (C) 
1.Khảo sát sự biến thiên và vẽ đồ thị (C). 
2.Dùng đồ thị (C), tìm các giá trị của m để phương trình sau có bốn nghiệm thực 
4
2 2 0
4
- + - =
x
x m . 
Câu 2 ( 3,0 điểm ) 
1.Giải phương trình 1 2
2
log (2 3) log (3 1) 1+ + + =x x . 
2.Tính tích phân 
2
1
ln
= ò
e x
I dx
x
3.Giải bất phương trình 2 13 3 28+ -+ ³x x . 
 Câu 3 ( 1,0 điểm ) 
 Cho hình chóp S. ABC có đáy ABC là tam giác vuông cân tại A. Cạnh bên SA vuông góc với mặt phẳng 
đáy. SA = AB = 2a. 
Tính thể tích của S.ABC. 
II. PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm ) 
 Câu 4a ( 2,0 điểm ) Cho hai điểm A(1;0;-2), B(0;1;1) 
1. Lập phương trình đường thẳng đi hai A và B. 
2. Lập phương trình mặt cầu (S) có đường kính là AB. 
 Câu 5a ( 1,0 điểm ) Tính giá trị của biểu thức 
2010
1
æ ö
ç ÷+è ø
i
i
ĐỀ ÔN THI TỐT NGHIỆP THPT 2010 – WWW.MATHVN.COM 
72 ĐỀ 2010  
23 
ĐỀ 44 
I.PHẦN CHUNG (7,0 điểm ) 
Câu 1 ( 3,0 điểm ) Cho hàm số 4 22 3= - + +y x x có đồ thị (C) 
1.Khảo sát sự biến thiên và vẽ đồ thị (C). 
2.Dùng đồ thị (C) , biện luận theo m số nghiệm của phương trình 
 4 22 0- - =x x m 
Câu 2 ( 3,0 điểm ) 
1.Giải phương trình 1 14 6.2 8 0+ +- + =x x . 
2.Tính tích phân 
2
2 3
0
2.= +òI x x dx 
3.Tìm GTLN, GTNN của hàm số 3 23 9= + -y x x x trên đoạn [-2;2]. 
 Câu 3 ( 1,0 điểm ) 
 Cho hình chóp S. ABC có đáy ABC là tam giác vuông tại B. Cạnh bên SC vuông góc với mặt phẳng đáy. 
SC = AB = a/2, BC = 3a 
Tính thể tích của S.ABC. 
II. PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 3,0 điểm ) 
 Câu 4a ( 2,0 điểm ) Cho hai điểm M(3;-4;5), N(1;0;-2) 
1. Lập phương trình cầu đi qua M và có tâm là N. 
2. Lập phương trình mặt phẳng qua M tiếp xúc với mặt cầu. 
 Câu 5a ( 1,0 điểm ) Giải phương trình 22 3 11 0+ + =x x trên tập số phức. 
ĐỀ 45 
I.PHẦN CHUNG (7,0 điểm ) 
Câu 1 ( 3,0 điểm ) Cho hàm số 4 21

File đính kèm:

  • pdf72dethiTN_2010-tailieu.pdf
Bài giảng liên quan