Đề cương ôn tập Hình học Lớp 10B
Baøi 1. Cho ba điểm A(1; –2), B(2; 3), C(–1; –2).
a) Tìm toạ độ điểm D đối xứng của A qua C.
b) Tìm toạ độ điểm E là đỉnh thứ tư của hình bình hành có 3 đỉnh là A, B, C.
c) Tìm toạ độ trọng tâm G của tam giác ABC.
VẤN ĐỀ 1: Khái niệm vectơ Cho tứ giác ABCD. Có thể xác định được bao nhiêu vectơ (khác ) có điểm đầu và điểm cuối là các điểm A, B, C, D ? Cho DABC có A¢, B¢, C¢ lần lượt là trung điểm của các cạnh BC, CA, AB. a) Chứng minh: . b) Tìm các vectơ bằng . Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, CD, AD, BC. Chứng minh: . Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Chứng minh: a) . b) Nếu thì ABCD là hình chữ nhật. Cho hai véc tơ . Trong trường hợp nào thì đẳng thức sau đúng: . Cho DABC đều cạnh a. Tính . VẤN ĐỀ 2: Chứng minh đẳng thức vectơ – Phân tích vectơ Cho 6 điểm A, B, C, D, E, F. Chứng minh: a) b) . Cho 4 điểm A, B, C, D. Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh: a) Nếu thì b) . c) Gọi G là trung điểm của IJ. Chứng minh: . d) Gọi P, Q lần lượt là trung điểm của AC và BD; M, N lần lượt là trung điểm của AD và BC . Chứng minh các đoạn thẳng IJ, PQ, MN có chung trung điểm. Cho 4 điểm A, B, C, D. Gọi I, J lần lượt là trung điểm của BC và CD. Chứng minh: . Cho DABC. Bên ngoài tam giác vẽ các hình bình hành ABIJ, BCPQ, CARS. Chứng minh: . Cho tam giác ABC, có AM là trung tuyến. I là trung điểm của AM. a) Chứng minh: . b) Với điểm O bất kỳ, chứng minh: . Cho DABC có M là trung điểm của BC, G là trọng tâm, H là trực tâm, O là tâm đường tròn ngoại tiếp. Chứng minh: a) b) c) . Cho hai tam giác ABC và A¢B¢C¢ lần lượt có các trọng tâm là G và G¢. a) Chứng minh . b) Từ đó suy ra điều kiện cần và đủ để hai tam giác có cùng trọng tâm. Cho tam giác ABC. Gọi M là điểm trên cạnh BC sao cho MB = 2MC. Chứng minh: . Cho tam giác ABC. Gọi M là trung điểm của AB, D là trung điểm của BC, N là điểm thuộc AC sao cho . K là trung điểm của MN. Chứng minh: a) b) . Cho hình thang OABC. M, N lần lượt là trung điểm của OB và OC. Chứng minh rằng: a) b) c) . Cho DABC. Gọi M, N lần lượt là trung điểm của AB, AC. Chứng minh rằng: a) c) c) . Cho DABC có trọng tâm G. Gọi H là điểm đối xứng của B qua G. a) Chứng minh: và . b) Gọi M là trung điểm của BC. Chứng minh: . Cho hình bình hành ABCD, đặt . Gọi I là trung điểm của CD, G là trọng tâm của tam giác BCI. Phân tích các vectơ theo . Cho lục giác đều ABCDEF. Phân tích các vectơ theo các vectơ . Cho hình thang OABC, AM là trung tuyến của tam giác ABC. Hãy phân tích vectơ theo các vectơ . Cho DABC. Trên các đường thẳng BC, AC, AB lần lượt lấy các điểm M, N, P sao cho . a) Tính theo b) Chứng minh: M, N, P thẳng hàng. VẤN ĐỀ 3: Toạ độ trên hệ trục Cho . a) Tìm toạ độ của vectơ . b) Tìm 2 số m, n sao cho: . c) Biểu diễn vectơ . Cho hai điểm . a) Tìm toạ độ điểm C sao cho: . b) Tìm điểm D đối xứng của A qua C. c) Tìm điểm M chia đoạn AB theo tỉ số k = –3. Cho ba điểm A(–1; 1), B(1; 3), C(–2; 0). a) Chứng minh ba điểm A, B, C thẳng hàng. b) Tìm các tỉ số mà điểm A chia đoạn BC, điểm B chia đoạn AC, điểm C chia đoạn AB. Cho ba điểm A(1; -2), B(0; 4), C(3; 2). a) Tìm toạ độ các vectơ . b) Tìm tọa độ trung điểm I của đoạn AB. c) Tìm tọa độ điểm M sao cho: . d) Tìm tọa độ điểm N sao cho: . Cho ba điểm A(1; –2), B(2; 3), C(–1; –2). a) Tìm toạ độ điểm D đối xứng của A qua C. b) Tìm toạ độ điểm E là đỉnh thứ tư của hình bình hành có 3 đỉnh là A, B, C. c) Tìm toạ độ trọng tâm G của tam giác ABC.
File đính kèm:
- de_cuong_on_tap_hinh_hoc_lop_10b.doc