Đề cương ôn tập Hình học Lớp 10B

Baøi 1. Cho ba điểm A(1; –2), B(2; 3), C(–1; –2).

 a) Tìm toạ độ điểm D đối xứng của A qua C.

 b) Tìm toạ độ điểm E là đỉnh thứ tư của hình bình hành có 3 đỉnh là A, B, C.

 c) Tìm toạ độ trọng tâm G của tam giác ABC.

 

doc3 trang | Chia sẻ: Đạt Toàn | Ngày: 04/05/2023 | Lượt xem: 267 | Lượt tải: 0download
Bạn đang xem nội dung Đề cương ôn tập Hình học Lớp 10B, để tải tài liệu về máy bạn hãy click vào nút TẢI VỀ
VẤN ĐỀ 1: Khái niệm vectơ
Cho tứ giác ABCD. Có thể xác định được bao nhiêu vectơ (khác ) có điểm đầu và điểm cuối là các điểm A, B, C, D ?
Cho DABC có A¢, B¢, C¢ lần lượt là trung điểm của các cạnh BC, CA, AB.
	a) Chứng minh: .
	b) Tìm các vectơ bằng .
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, CD, AD, BC. Chứng minh: .
Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Chứng minh:
	a) .
	b) Nếu thì ABCD là hình chữ nhật.
Cho hai véc tơ . Trong trường hợp nào thì đẳng thức sau đúng: .
Cho DABC đều cạnh a. Tính .
VẤN ĐỀ 2: Chứng minh đẳng thức vectơ – Phân tích vectơ
Cho 6 điểm A, B, C, D, E, F. Chứng minh: 
	a) 	b) .
Cho 4 điểm A, B, C, D. Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh:
	a) Nếu thì 	b) .
	c) Gọi G là trung điểm của IJ. Chứng minh: .
	d) Gọi P, Q lần lượt là trung điểm của AC và BD; M, N lần lượt là trung điểm của AD và BC . Chứng minh các đoạn thẳng IJ, PQ, MN có chung trung điểm.
Cho 4 điểm A, B, C, D. Gọi I, J lần lượt là trung điểm của BC và CD. Chứng minh: .
Cho DABC. Bên ngoài tam giác vẽ các hình bình hành ABIJ, BCPQ, CARS. Chứng minh: .
Cho tam giác ABC, có AM là trung tuyến. I là trung điểm của AM.
	a) Chứng minh: .
	b) Với điểm O bất kỳ, chứng minh: .
Cho DABC có M là trung điểm của BC, G là trọng tâm, H là trực tâm, O là tâm đường tròn ngoại tiếp. Chứng minh:
	a) 	b) 	c) .
Cho hai tam giác ABC và A¢B¢C¢ lần lượt có các trọng tâm là G và G¢. 
	a) Chứng minh .
	b) Từ đó suy ra điều kiện cần và đủ để hai tam giác có cùng trọng tâm.
Cho tam giác ABC. Gọi M là điểm trên cạnh BC sao cho MB = 2MC. Chứng minh: .
Cho tam giác ABC. Gọi M là trung điểm của AB, D là trung điểm của BC, N là điểm thuộc AC sao cho . K là trung điểm của MN. Chứng minh:
	a) 	b) .
Cho hình thang OABC. M, N lần lượt là trung điểm của OB và OC. Chứng minh rằng:
	a) 	b) 	c) .
Cho DABC. Gọi M, N lần lượt là trung điểm của AB, AC. Chứng minh rằng:
	a) 	c) 	c) .
Cho DABC có trọng tâm G. Gọi H là điểm đối xứng của B qua G.
	a) Chứng minh: và .
	b) Gọi M là trung điểm của BC. Chứng minh: .
Cho hình bình hành ABCD, đặt . Gọi I là trung điểm của CD, G là trọng tâm của tam giác BCI. Phân tích các vectơ theo .
Cho lục giác đều ABCDEF. Phân tích các vectơ theo các vectơ .
Cho hình thang OABC, AM là trung tuyến của tam giác ABC. Hãy phân tích vectơ theo các vectơ .
Cho DABC. Trên các đường thẳng BC, AC, AB lần lượt lấy các điểm M, N, P sao cho .
	a) Tính theo 	b) Chứng minh: M, N, P thẳng hàng.
VẤN ĐỀ 3: Toạ độ trên hệ trục
Cho .
	a) Tìm toạ độ của vectơ .
	b) Tìm 2 số m, n sao cho: .
	c) Biểu diễn vectơ .
 Cho hai điểm .
	a) Tìm toạ độ điểm C sao cho: .
	b) Tìm điểm D đối xứng của A qua C.
	c) Tìm điểm M chia đoạn AB theo tỉ số k = –3.
 Cho ba điểm A(–1; 1), B(1; 3), C(–2; 0).
	a) Chứng minh ba điểm A, B, C thẳng hàng.
	b) Tìm các tỉ số mà điểm A chia đoạn BC, điểm B chia đoạn AC, điểm C chia đoạn AB.
 Cho ba điểm A(1; -2), B(0; 4), C(3; 2).
	a) Tìm toạ độ các vectơ .
	b) Tìm tọa độ trung điểm I của đoạn AB.
	c) Tìm tọa độ điểm M sao cho: .
	d) Tìm tọa độ điểm N sao cho: .
 Cho ba điểm A(1; –2), B(2; 3), C(–1; –2). 
	a) Tìm toạ độ điểm D đối xứng của A qua C.
	b) Tìm toạ độ điểm E là đỉnh thứ tư của hình bình hành có 3 đỉnh là A, B, C.
	c) Tìm toạ độ trọng tâm G của tam giác ABC.

File đính kèm:

  • docde_cuong_on_tap_hinh_hoc_lop_10b.doc