Đề thi tuyển sinh cao đẳng năm 2008 môn thi: Toán, khối B

Câu IV (2 điểm)

1. Tính diện tích hình phẳng giới hạn bởi parabol ( P) :y=-x2+4x và đường thẳng d : y= x.

2. Cho hai số thực x, y thay đổi và thỏa mãn x2+y2=2Tìm giá trị lớn nhất và giá trị nhỏ

nhất của biểu thức P=2(x3+y3)-3xy

pdf1 trang | Chia sẻ: tuanbinh | Lượt xem: 1105 | Lượt tải: 0download
Bạn đang xem nội dung Đề thi tuyển sinh cao đẳng năm 2008 môn thi: Toán, khối B, để tải tài liệu về máy bạn hãy click vào nút TẢI VỀ
BỘ GIÁO DỤC VÀ ĐÀO TẠO 
ĐỀ CHÍNH THỨC 
ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2008 
Môn thi: TOÁN, khối B 
Thời gian làm bài: 180 phút, không kể thời gian phát đề 
PHẦN CHUNG CHO TẤT CẢ THÍ SINH 
Câu I (2 điểm) 
Cho hàm số xy .
x 1
=
−
1. Khảo sát sự biến thiên và vẽ đồ thị ( )C của hàm số đã cho. 
2. Tìm m để đường thẳng d : y x m= − + cắt đồ thị ( )C tại hai điểm phân biệt. 
Câu II (2 điểm) 
1. Giải phương trình sin 3x 3 cos3x 2sin 2x.− = 
2. Tìm giá trị của tham số m để hệ phương trình 
x my 1
mx y 3
− =⎧⎨
+ =⎩ có nghiệm ( )x; y thỏa mãn 
xy 0.< 
Câu III (2 điểm) 
 Trong không gian với hệ tọa độ Oxyz, cho điểm ( )A 1; 1; 3 và đường thẳng d có phương trình 
x y z 1.
1 1 2
−
= =
−
1. Viết phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng d. 
2. Tìm tọa độ điểm M thuộc đường thẳng d sao cho tam giác MOA cân tại đỉnh O. 
Câu IV (2 điểm) 
1. Tính diện tích hình phẳng giới hạn bởi parabol ( ) 2P : y x 4x= − + và đường thẳng d : y x.= 
2. Cho hai số thực x, y thay đổi và thỏa mãn 2 2x y 2.+ = Tìm giá trị lớn nhất và giá trị nhỏ 
nhất của biểu thức ( )3 3P 2 x y 3xy.= + − 
PHẦN RIÊNG __________ Thí sinh chỉ được làm 1 trong 2 câu: V.a hoặc V.b __________ 
Câu V.a. Theo chương trình KHÔNG phân ban (2 điểm) 
1. Trong mặt phẳng với hệ toạ độ Oxy , tìm điểm A thuộc trục hoành và điểm B thuộc trục 
tung sao cho A và B đối xứng với nhau qua đường thẳng d : x 2y 3 0.− + = 
2. Tìm số hạng không chứa x trong khai triển nhị thức Niutơn của ( )
18
5
12x x 0 .
x
⎛ ⎞
+ >⎜ ⎟⎝ ⎠ 
Câu V.b. Theo chương trình phân ban (2 điểm) 
1. Giải phương trình ( )22 2log x 1 6log x 1 2 0.+ − + + = 
2. Cho hình chóp S.ABCD có đáy ABCD là hình thang, n n oBAD ABC 90 ,= = AB BC a,= = 
AD 2a,= SA vuông góc với đáy và SA 2a.= Gọi M, N lần lượt là trung điểm của SA, SD. 
Chứng minh rằng BCNM là hình chữ nhật và tính thể tích của khối chóp S.BCNM theo a. 
---------------------------Hết--------------------------- 
Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. 
Họ và tên thí sinh: ............. Số báo danh:  

File đính kèm:

  • pdfDeToanBCt_CD.pdf
  • pdfDaToanBCt_CD.pdf
Bài giảng liên quan