Đề thử sức đại học môn Toán - Đề tham khảo số 7
2) Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P): x + 2y z - 2 + 1 =0 và hai điểm A(1; 7; –1), B(4; 2; 0). Lập phương trình đường thẳng d là hình chiếu vuông góc của đường thẳng AB lên mặt phẳng (P).
Trần Sĩ Tùng Trung tâm BDVH & LTĐH QUANG MINH Đề số 7 ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 Môn thi: TOÁN Thời gian: 180 phút (không kể thời gian phát đề) I. PHẦN CHUNG (7 điểm) Câu I (2 điểm): Cho hàm số x y x 2 4 1 - = + . 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Tìm trên đồ thị (C), hai điểm đối xứng nhau qua đường thẳng MN, biết M(–3; 0), N(–1; –1). Câu II (2 điểm): 1) Giải phương trình: x x x x4 1 3 74 cos cos2 cos 4 cos 2 4 2 - - + = 2) Giải hệ phương trình: x xx x3 .2 3 2 1= + + Câu III (1 điểm): Tính tích phân: I = x x e dx x 2 0 1 sin 1 cos p æ ö+ ç ÷+è øò Câu IV (1 điểm): Tính thể tích khối chóp S.ABC, biết SA = a, SB = b, SC = c, · · ·ASB BSC CSA0 0 060 , 90 , 120= = = . Câu V (1 điểm): Cho các số dương x, y, z thoả mãn: xyz = 8. Tìm giá trị nhỏ nhất của biểu thức: P = x y z2 2 22 2 2log 1 log 1 log 1+ + + + + II. PHẦN TỰ CHỌN (3 điểm) 1. Theo chương trình chuẩn Câu VI.a (2 điểm): 1) Trong mặt phẳng với hệ toạ độ Oxy, cho 2 đường thẳng d1: x y 1 0+ + = và d2: x y2 1 0- - = . Lập phương trình đường thẳng d đi qua M(1; 1) và cắt d1, d2 tương ứng tại A, B sao cho MA MB2 0+ = uuur uuur r . 2) Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P): x y z2 2 1 0+ - + = và hai điểm A(1; 7; –1), B(4; 2; 0). Lập phương trình đường thẳng d là hình chiếu vuông góc của đường thẳng AB lên mặt phẳng (P). Câu VII.a (1 điểm): Kí hiệu x1, x2 là các nghiệm phức của phương trình x x22 2 1 0- + = . Tính giá trị các biểu thức x21 1 và x22 1 . 2. Theo chương trình nâng cao Câu VI.b (2 điểm): 1) Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C): x y x y2 2 2 2 3 0+ - - - = và điểm M(0; 2). Viết phương trình đường thẳng d qua M và cắt (C) tại hai điểm A, B sao cho AB có độ dài ngắn nhất. 2) Trong không gian với hệ toạ độ Oxyz, cho 3 điểm A(1; 0; 0), B(0; 2; 0), C(0; 0; 3). Tìm toạ độ trực tâm của tam giác ABC. Câu VII.b (1 điểm): Tìm các giá trị x, biết trong khai triển Newton ( )x n x5lg(10 3 ) ( 2)lg32 2- -+ số hạng thứ 6 bằng 21 và n n nC C C 1 3 22+ = . ============================ TRƯỜNG THCS & THPT NGUYỄN KHUYẾN ĐỀ THỬ SỨC ĐẠI HỌC 2010 LỚP 12D1 Môn thi: Toán Thời gian làm bài: 180 phút (không kể thời gian phát đề) ĐỀ SỐ 007
File đính kèm:
- De-thamkhao-07.pdf