Ôn thi Đại học môn Toán - Chuyên đề 2: Hệ phương trình đại số

2. Hệ phương trình đối xứng loại II:

a.Định nghĩa: Đó là hệ chứa hai ẩn x,y mà khi ta thay đổi vai trò x,y cho nhau

 thì phương trình nầy trở thành phương trình kia của hệ.

b. Cách giải:

· Trừ vế với vế hai phương trình và biến đổi về dạng phương trình tích số.

· Kết hợp một phương trình tích số với một phương trình của hệ để suy ra nghiệm của hệ .

 

 

doc4 trang | Chia sẻ: tuanbinh | Lượt xem: 998 | Lượt tải: 0download
Bạn đang xem nội dung Ôn thi Đại học môn Toán - Chuyên đề 2: Hệ phương trình đại số, để tải tài liệu về máy bạn hãy click vào nút TẢI VỀ
Chuyên đề 2 : HỆ PHƯƠNG TRÌNH ĐẠI SỐ
 TÓM TẮT GIÁO KHOA
I. Hệ phương trình bậc nhất nhiều ẩn	
1. Hệ phương trình bậc nhất hai ẩn
a. Dạng : (1) 
 Cách giải đã biết: Phép thế, phép cộng ...
b. Giải và biện luận phương trình : Quy trình giải và biện luận 
	 Bước 1: Tính các định thức :
 (gọi là định thức của hệ)
 (gọi là định thức của x)
 (gọi là định thức của y)
Bước 2: Biện luận
Nếu thì hệ có nghiệm duy nhất 
Nếu D = 0 và hoặc thì hệ vô nghiệm
Nếu D = Dx = Dy = 0 thì hệ có vô số nghiệm hoặc vô nghiệm
Ý nghĩa hình học: Giả sử (d1) là đường thẳng a1x + b1y = c1
 (d2) là đường thẳng a2x + b2y = c2
 Khi đó:
1. Hệ (I) có nghiệm duy nhất (d1) và (d2) cắt nhau
2. Hệ (I) vô nghiệm (d1) và (d2) song song với nhau
3. Hệ (I) có vô số nghiệm (d1) và (d2) trùng nhau
Áp dụng:
Ví dụ1: Giải hệ phương trình: 
Ví dụ 2: Giải và biện luận hệ phương trình : 
Ví dụ 3: Cho hệ phương trình : 
	 Xác định tất cả các giá trị của tham số m để hệ có nghiệm duy nhất (x;y) thỏa x >1 và y > 0
Ví dụ 4: Với giá trị nguyên nào của tham số m hệ phương trình có nghiệm duy nhất 
 (x;y) với x, y là các số nguyên. 
 ()
Ví dụ 5: Cho hệ phương trình : 
	 Xác định tất cả các giá trị của tham số m để hệ có nghiệm duy nhất (x;y) sao cho đạt 
 giá trị lớn nhất.
II. Hệ phương trình bậc hai hai ẩn:
	1. Hệ gồm một phương trình bậc nhất và một phương trình bậc hai hai ẩn:
	 Ví dụ : Giải các hệ: 
a) b) 
 Cách giải: Giải bằng phép thế
2. Hệ phương trình đối xứng :
1. Hệ phương trình đối xứng loại I:
a.Định nghĩa: Đó là hệ chứa hai ẩn x,y mà khi ta thay đổi vai trò x,y cho nhau 
 thì hệ phương trình không thay đổi.
b.Cách giải:
Bước 1: Đặt x+y=S và xy=P với ta đưa hệ về hệ mới chứa hai ẩn S,P.
Bước 2: Giải hệ mới tìm S,P . Chọn S,P thoả mãn .
Bước 3: Với S,P tìm được thì x,y là nghiệm của phương trình : 
	 ( định lý Viét đảo ).
Chú ý: Do tính đối xứng, cho nên nếu (x0;y0) là nghiệm của hệ thì (y0;x0) cũng là nghiệm của hệ 
Áp dụng:
Ví du 1ï: Giải các hệ phương trình sau : 
 1) 2) 3) 4)
 5) 6) 7) 8) 
1) (0;2); (2;0)	2) 	3) 
4) 	5) 	6) 	
7) (4;4)	8) 
Ví dụ2 : Với giá trị nào của m thì hệ phương trình sau có nghiệm: 
Ví dụ 3: Với giá trị nào của m thì hệ phương trình sau có nghiệm: 
2. Hệ phương trình đối xứng loại II:
a.Định nghĩa: Đó là hệ chứa hai ẩn x,y mà khi ta thay đổi vai trò x,y cho nhau 
 thì phương trình nầy trở thành phương trình kia của hệ.
b. Cách giải:
Trừ vế với vế hai phương trình và biến đổi về dạng phương trình tích số.
Kết hợp một phương trình tích số với một phương trình của hệ để suy ra nghiệm của hệ .
Áp dụng:
Ví dụ: Giải các hệ phương trình sau: 
 1) 2) 3) 
 4) 5) 6) 
III. Hệ phương trình đẳng cấp bậc hai:
 a. Dạng : 
 b. Cách giải:
Đặt ẩn phụ hoặc . Giả sử ta chọn cách đặt . 
 Khi đó ta có thể tiến hành cách giải như sau:
Bước 1: Kiểm tra xem (x,0) có phải là nghiệm của hệ hay không ?
Bước 2: Với y0 ta đặt x = ty. Thay vào hệ ta được hệ mới chứa 2 ẩn t,y .Từ 2 phương trình ta 
 khử y để được 1 phương trình chứa t .
Bước 3: Giải phương trình tìm t rồi suy ra x,y.
Áp dụng:
Ví dụ: Giải các hệ phương trình sau: 
 1) 2) 3) 
IV. Các hệ phương trình khác:
 Ta có thể sử dụng các phương pháp sau:
a. Đặt ẩn phụ:
 Ví dụ : Giải các hệ phương trình : 
 1) 2) 
 3) 4) 
b. Sử dụng phép cộng và phép thế:
 Ví dụ: Giải hệ phương trình : 
c. Biến đổi về tích số:
 Ví dụ : Giải các hệ phương trình sau: 
 1) 2) 3) 
--------------------------Hết--------------------------

File đính kèm:

  • doc2.Hedaiso.doc
Bài giảng liên quan