Bài giảng Ôn tập chương III: Tam giác đồng dạng

a. Định nghĩa: ABC ~ A’B’C’

b.Tính chất: h và h’; p và p’; S và S’ là đường

cao, chu vi, diện tích của ABC và A’B’C’

Cho ABC ~ A’B’C’ theo tỉ số k thì

 

ppt14 trang | Chia sẻ: haha | Lượt xem: 1635 | Lượt tải: 3download
Bạn đang xem nội dung Bài giảng Ôn tập chương III: Tam giác đồng dạng, để tải tài liệu về máy bạn hãy click vào nút TẢI VỀ
ÔN TẬP CHƯƠNG III: TAM GIÁC ĐỒNG DẠNGPhạm Đức Cường THCS Him Lam - TP Điện Biên-Mỗi nhóm cử đại diện chọn một câu hỏi và trả lời (câu hỏi cho dưới dạng điền vào chỗ...)- Các nhóm có thể bổ sung khi câu trả lời saiHình ảnh dưới Kim Tự Tháp này là ai?Sau khi trả lời các câu hỏi một phần hình nền sẽ được mở ra “ Bí mật Kim Tự Tháp” sẽ được bật mí!Phạm Đức Cường THCS Him Lam - TP Điện Biên1327465Thales(624-547 tr.C.N)Talet (Thales) là một trong những nhà hình học đầu tiên của Hy Lạp. Hồi còn trẻ có lần ông đã sang Ai Cập và tiếp xúc các nhà khoa học đương thời . Talet đã giải được bài tóan đo chiều cao của Kim tự tháp bằngcách hết sức đơn giản nhờ vào tính chất của tam giác đồng dạng .Việc này tưởng như đơn giản thì lúc đó lại có ý nghĩa vĩ đại Phạm Đức Cường THCS Him Lam - TP Điện BiênCâu 5: Tính chất đọan thẳng tỉ lệa. Định nghĩa: AB, CD tỉ lệ với A’ B’, C’D’   hay .b. Tính chấtCD.A’B’A’B  C’D’ C’D’A’B’CD  C’D’Phạm Đức Cường THCS Him Lam - TP Điện BiênCâu 1: Định lý Talet thuận và đảo ABC ; a // BC ABCB’C’Phạm Đức Cường THCS Him Lam - TP Điện BiênCâu 2: Hệ quả định của lý TaletABC ; a //BCPhạm Đức Cường THCS Him Lam - TP Điện BiênCâu 7: Tính chất của đường phân giác trong tam giácAD là phân giác trong của ABCAE là phân giác ngoài của ABC.Phạm Đức Cường THCS Him Lam - TP Điện BiênCâu 6: Tam giác đồng dạnga. Định nghĩa: ABC ~ A’B’C’ b.Tính chất: h và h’; p và p’; S và S’ là đườngcao, chu vi, diện tích của ABC và A’B’C’ Cho ABC ~ A’B’C’ theo tỉ số k thìkkk2Phạm Đức Cường THCS Him Lam - TP Điện BiênCâu 3: Liên hệ giữa các trường hợp đồng dạng và bằng nhau của hai tam giácABC ~ A’B’C’ nếuABC = A’B’C’ nếu1. .......2. Â = Â’Và Â = Â’Và3.  AB = A’B’; BC = B’C’CA = C’A’ (c-c-c)AB = A’B’; AC = A’C’(c-g-c);AB = A’B’(g-c-g)(c-c-c)(c-g-c)(g-g)Phạm Đức Cường THCS Him Lam - TP Điện BiênABC đồng dạng A’B’C’ nếu1 2Hoặc 3 Câu 4: Các trường hợp đồng dạng của tam giác vuôngA’B’C’ABC.(c-g-c).(g-g).(cạnh huyền- cạnh góc vuông)Phạm Đức Cường THCS Him Lam - TP Điện BiênĐoạn thẳng tỉ lệĐịnh lí TaletTính chất đường phân giácTrong tam giác Hai tam giác đồng dạngĐịnh lí thuậnĐịnh lí đảoTrường hợp I(c-c-c)Trường hợp III(g-g)Trường hợp II(c-g-c)(Góc nhọn)(Hai cạnh góc vuông)(C.huyền -C.góc vuông)NỘI DUNG CHÍNH CỦA CHƯƠNG IIITAM GIÁC ĐỒNG DẠNGPhạm Đức Cường THCS Him Lam - TP Điện BiênBài tập: Tính độ dài x của đoạn thẳng trong hình vẽ. Biết MN // ABACBNM263xPhạm Đức Cường THCS Him Lam - TP Điện BiênBài 58 (sgk/92): Cho tam giác cân ABC (AB = AC), vẽ các đường cao BH, CK (h.66)Chứng minh BK = CH.Chứng minh KH // BC.Cho biết BC = a, AB = AC = b. Tính độ dài đoạn thẳng HK. Hướng dẫn câu c:-Vẽ thêm đường cao AI, xét hai tam giác đồng dạng IAC và HBC rồi tính CH-Tiếp theo, xét hai tam giác đồng dạng AKH và ABC rồi tính HKHình 66Phạm Đức Cường THCS Him Lam - TP Điện BiênDặn dòÔn lại các kiến thức trong chương IIIHoàn tất các câu hỏi trong sách giáo khoaLàm các bài tập ôn tập chương.Chuẩn bị tiết sau kiểm tra 1 tiết. Phạm Đức Cường THCS Him Lam - TP Điện Biên

File đính kèm:

  • pptON TAP CHUONG III_ TAM GIAC DONG DANG.ppt