Đề thi máy tính casio
Bài 7 : Cho tam giác ABC cân đỉnh A , các
đường cao cắt nhau tại một điểm trên đường tròn
nội tiếp . Tính số đo ( độ , phút , giây ) của góc A
Bài 8 : Cho hình chóp tứ giác đều có tâm mặt
cầu ngoại tiếp trùng với mặt cầu nội tiếp .Tính số
đo ( độ , phút , giây ) của góc giữa mặt bên và mặt đáy
phương trình ĐS : 0.747507 4) Tìm các nghiệm gần đúng bằng độ , phút , giây của phương trình : ĐS : , 5) Cho và Tính gần đúng với 6 chữ số thập phân . ĐS : 0.082059 6) Cho hình thang cân ABCD có AB song với CD , AB = 5 , BC = 12 , AC = 15 . a)Tính góc ABC ( độ , phút , giây ) ĐS : b)Tính diện tích hình thang ABCD gần đúng với 6 chữ số ' "34 12 50o ' "16 3914o 3cos 4sin 8sin 0x x x−+ = (0 90 )o ox<< 3 3 31751 1957 2369A =++ 1 2 3 4a b c d 52 2cos 1 0x x− += sin 0.6( ) 2 x xpipi=<< cos 0.75(0 ) 2 y y pi= << 2 3 2 2 2 2 sin ( 2 ) cos (2 ) ( ) ( ) x y x yB tg x y cotg x y +− + = ++ − ' "117 49 5o thập phân ĐS : 112.499913 7) Cho tam giác ABC vuông tại A có AB = 2 , AC = 4 và D là trung điểm của BC , I là tâm đường tròn nội tiếp tam giác ABD , J là tâm đường tròn ội tiếp tam giác ACD . Tính IJ gần đúng với 6 chữ số thập phân . ĐS : 1.479348 8) Tìm một số tự nhiên x biết lập phương của nó có tận cùng là bốn chữ số 1 ĐS : 8471 SỞ GIÁO DỤC ĐÀO TẠO TP.HỒ CHÍ MINH ĐỀ THI MÁY TÍNH BỎ TÚI TUYỂN HỌC SINH GIỎI BẬC THPT năm học 2003 - 2004 ( tháng 01/2004) Thời gian : 60 phút 1) Tìm ƯCLN và BCNN của 2 số 12081839 và 15189363 ĐS : ƯCLN :26789 BCNN : 6850402713 2) Tìm số dư khi chia cho 293 ĐS : 52 3) Tìm các nghiệm thuộc khoảng gần đúng với 6 chữ số thập phân của phương trình ĐS : 0.643097 , 2.498496 4) Tìm một ngiệm dương gần đúng với 6 chữ số thập phân của phương trình ĐS : 1.102427 5) Cho hình chữ nhật ABCD .Vẽ đường cao BH trong tam giác ABC . Cho BH = 17.25 , góc a) Tính diện tích ABCD gần đúng với 5 chữ số thập phân ĐS : b) Tìm độ dài AC gần đúng với 5 chữ số thập phân ĐS : 27176594 tgxxtgxtg =+23 0426 =−+xx '04038ˆ =CAB 97029.609≈S 36060.35≈AC 182 183 3) Tìm nghiệm gần đúng với 5 chữ số thập phân của phương trình ĐS : 0.72654 , − 0.88657 4) Tìm một ngiệm gần đúng tính bằng độ , phút giây của phương trình ĐS : 341250,163914 5) Cho tứ diện ABCD có AB = AC = AD = 6 dm , CD = 7 dm , BD = 8 dm . Tính giá trị gần đúng với 5 chữ số thập phân của : a) Thể tích tứ diện ABCD ĐS : 25.60382 b) Diện tích toàn phần của tứ diện ABCD ĐS : 65.90183 6) Gọi A là giao điểm có hoành độ dương của đường tròn (T) và đồ thị (C) : a) Tính hoành độ điểm A gần đúng với 9 chữ số thập phân ĐS : b) Tính tung độ điểm A gần đúng với 9 chữ số thập phân ĐS : c) Tính số đo ( độ , phút , giây ) của góc giữa 2 tiếp tuyến của (C) và (T) tại điểm A ĐS : 49059 7) Tìm một số tự nhiên x biết lập phương của nó tận cùng là bốn chữ số 1 ĐS : 8471 xxx cos23 += 0sin8sin4cos 3 =+− xxx )900( 0 ox << 122 =+yx 5xy = 868836961.0=Ax 495098307.0=Ay 6) Cho Tính gần đúng với 5 chữ số thập phân ĐS : 0.30198 7) Cho nửa đường tròn tâm O , đường kính AB = 2R .Một tia qua A hợp với AB một góc nhỏ hơn cắt nửa đường tròn (O) tại M Tiếp tuyến tại M của ( O) cắt đương thẳng AB tại T . Tính góc ( độ , phút , giây ) biết bán kính đường tròn goại tiếp tam giác AMT bằng ĐS : SỞ GIÁO DỤC ĐÀO TẠO TP.HỒ CHÍ MINH ĐỀ THI MÁY TÍNH BỎ TÚI CHỌN ĐỘI TUYỂN HỌC SINH GIỎI BẬC THPT (vòng hai ) năm học 2003 - 2004 ( tháng 01/2004) Thời gian : 60 phút 1)Tìm giá trị của a , b ( gần đúng với 5 chữ số thập phân ) biết đường thẳng y = ax + b tiếp xúc với đồ thị của hàm số Tại tiếp điểm có hoành độ ĐS : a = − 0.04604 ; b = 0.74360 2) Đồ thị của hàm số Đi qua các điểm A (1 ;3) ,B(3 ; 4) , C(1 ; 5) , B(2 ; 3) . Tính các giá trị cực đại và giá trị cực tiểu của hàm số gần đúng với 5 chữ số thập phân ĐS : xxgxtg xxxxN 433 3232 cos1)cot1)(1( )sin1(cos)cos1(sin +++ +++ = o45α 5R α "'15834O 124 1 2 ++ + = xx xy 21+=x dcxbxaxy +++= 23 00152.3,72306.5 −== CTCD yy 184 185 KỲ THI KHU VỰC GIẢI TOÁN TRÊN MÁY TÍNH CASIO CỦA BỘ GIÁO DỤC VÀ ĐÀO TẠO NĂM 2005 Lớp 12 Bổ túc THPT Thời gian : 150 phút ( Không kể thời gian giao đề ) Ngày thi : 1/3/2005 Bài 1 : Tìm nghiệm gần đúng ( độ , phút , giây ) của phương trình 4cos2x +5sin2x = 6 ĐS : 0"'01 180235335 kx +≈ ; 0"'02 18022715 kx +≈ Bài 2 : Tam giác ABC có cạnh AB = 7dm , các góc "'0 182348=A và "'0 394154=C .Tính gần đúng cạnh AC và diện tích của tam giác ĐS : dmAC 3550,8≈ ; 28635,21 dmS ≈ Bài 3 : Tính gần đúng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x)= 1 + 2sìn2x + 3cosx trên đoạn []pi;0 ĐS : 3431,5)(max ≈xf ; 3431,3)(min ≈xf Bài 4 : Hình chóp S.ABCD có đáy ABCD là hình chữ nhật với các cạnh AB = 9dm , 34=AD dm , chân đường cao là giao điểm H của hai đường chéo đáy , cạnh bên SA = 7dm . Tính gần đúng đường cao SH và thể tích hình chóp ĐS : dmSH 0927,4≈ , 30647,85 dmV ≈ Bài 5 :Tính gần đúng giá trị của a và b nếu đường thẳng y = ax + b đi qua điểm M(5 ; -4) và là tiếp tuyến của elip 1 916 22 =+ yx 186 Bài 6 : Tính gần đúng nghiệm của phương trình xxx 3sin54 += ĐS : 6576,11 ≈x , 1555,02 ≈x Bài 7 : Đường tròn 022 =++++ rqypxyx đi qua ba điểm A( 5 ; 4 ) , B(-2 ;8) ,C(4;7) .Tính giá trị của p , q ,r. ĐS : 17 15 −=p ; 17 141 −=q ; 17 58 −=r Bài 8 : Tính gần đúng tọa độ của các giao điểm M Và N của đường tròn 216822 =+−+ yxyx và đường thẳng đi qua hai điểm A(4;-5) , B(-5;2) ĐS : ( )1966,0;1758,2 −−M ; ( )2957,8;2374,8 −N Bài 9 : Gọi A và B là điểm cực đại và điểm cực tiểu của đồ thị hàm số 125. 23 ++−= xxxy a) Tính gần đúng khoảng cách AB ĐS : 6089,12≈AB b) Đường thẳng y = ax + b đi qua hai điểm A và B . Tính giá trị của a và b . ĐS : 9 38 −=a , 9 19 =b Bài 10 : Tìm nghiệm gần đúng ( độ , phút , giây ) của phương trình sinx cosx + 3(sinx + cosx) = 2 ĐS : 0"'01 360122213 kx +−≈ ; 0"'02 3601222103 kx +≈ KỲ THI KHU VỰC GIẢI TOÁN TRÊN MÁY TÍNH CASIO CỦA BỘ GIÁO DỤC VÀ ĐÀO TẠO NĂM 2006 Lớp 12 Bổ túc THPT Thời gian : 150 phút ( Không kể thời gian giao đề ) 187 Bài 1 : Tính gần đúng giá trị cực đại và giá trị cực tiểu của hàm số 32 143 2 + +− = x xxy ĐS : 92261629,12)(max −≈xf ; 07738371,0)(min −≈xf Bài 2 : Tính a và b nếu đường thẳng y = ax + b đi qua điểm M( -2 ; 3) và là tiếp tuyến của parabol xy 82 = ĐS : 21 −=a , 11 −=b ; 2 1 2 =a , 42 =b Bài 3 : Tính gần đúng tọa độ các giao điểm của đường thẳng 3x + 5y = 4 và elip 1 49 22 =+ yx ĐS : 725729157,21 ≈x ; 835437494,01 −≈y ; 532358991,12 −≈x ; 719415395.12 ≈y Bài 4 : Tính gần đúng giá trị lớn nhất và giá trị nhỏ nhất của hàm số () 2sin32cos ++= xxxf ĐS 789213562,2)(max ≈xf , 317837245,1)(min −≈xf Bài 5 :Tính gần đúng ( độ , phút , giây ) nghiệm của phương trình 9 cos3x – 5 sin3x = 2 ĐS : 0"'01 120533416 kx +≈ ; 0"'02 12045735 kx +−≈ Bài 6 : Tính gần đúng khoảng cách giữa điểm cực đại và điểm cực tiểu của đồ thị hàm số 2345 23 +−−= xxxy ĐS : 0091934412,3≈d Bài 7 : Tính giá trị của a , b , c nếu đồ thị hàm số cbxaxy ++=2 đi qua các điểm A(2;-3) , B( 4 ;5) , C(-1;-5) ĐS : 3 2 =a ; b = 0 ; 3 17 −=c Bài 8 : Tính gần đúng thể tích khối tứ diện ABCD biết rằng AB = AC =AD = 8dm , BC = BD = 9dm , CD = 10dm ĐS : )(47996704,73 3dmVABCD ≈ Bài 9 : Tính gần đúng diện tích hình tròn ngoại tiếp tam giác có các đỉnh A(4 ; 5) , B(-6 ; 7) , C(-8 ; -9) , ĐS : dvdtS 4650712,268≈ Bài 10 : Tính gần đúng các nghiệm của hệ =− =− 52 52 2 2 xy yx ĐS : 449489743,311 ≈=yx ; 449489743,122 −≈=yx 414213562,03 ≈x ; 414213562,23 −≈y 414213562,24 −≈x ; 414213562,04 ≈y Bài 1 : Tính gần đúng giá trị ( độ , phút , giây ) của phương trình 4cos2x +3 sinx = 2 ĐS : 0"'01 360431046 kx +≈ ; 0"'02 3601749133 kx +≈ 0"'03 360241620 kx +−≈ ; 0"'0 4 3602416200 kx +≈ KỲ THI KHU VỰC GIẢI TOÁN TRÊN MÁY TÍNH CASIO CỦA BỘ GIÁO DỤC VÀ ĐÀO TẠO NĂM 2007 (Lớp 12 Bổ túc THPT) Thời gian : 150 phút ( Không kể thời gian giao đề ) Ngày thi : 13/3/2007 188 189 Bài 2 : Tính gần đúng giá trị lớn nhất và giá trị nhỏ nhất của hàm số () 2332 2 +−++= xxxxf ĐS : ()6098,10max ≈xf ; ()8769,1min ≈xf Bài 3 : Tính giá trị của a , b , c , d nếu đồ thị hàm số dcxbxaxy +++= 23 đi qua các điểm 3 1;0A ; 5 3;1B ; C(2;1) ; D(2,4 ; -3,8 ) ĐS : 252 937 −=a ; 140 1571 =b ; 630 4559 −=c ; 3 1 =d Bài 4 :Tính diện tích tam giác ABC nếu phương trình các cạnh của tam giác đó là AB : x + 3y = 0 ; BC : 5x + y - 2 = 0 ; AC : x + y – 6 = 0 ĐS : 7 200 =S Bài 5 :Tính gần đúng nghiệm của hệ phương trình =+ =+ 19169 543 yx yx ĐS : −≈ ≈ 2602,0 3283,1 1 1 y x ; ≈ −≈ 0526,1 3283,0 2 2 y x Bài 6 : Tính giá trị của a và b nếu đường thẳng y = ax + b đi qua điểm M( 5 ; -4 ) và là tiếp tuyến của đồ thị hàm số x xy 23 +−= Bài 7 : Tính gần đúng thể tích khối tứ diện ABCD nếu BC = 6 dm , CD = 7cm , BD = 8dm AB = AC = AD = 9 dm ĐS : 31935,54 dmV ≈ Bài 8 : Tính giá trị của biểu thức 1010 baS += nếu a và b là hai nghiệm khác nhau của phương trình 0132 2 =−−xx . ĐS : 1024 328393 =S Bài 9 : Tính gần đúng diện tích toàn phần của hình chóp S.ABCD nếu đáy ABCD là hình chữ nhật , cạnh SA vuông góc với đáy , AB = 5 dm , AD = 6 dm ,SC = 9dm ĐS : 24296,93 dmS tp ≈ Bài 10 : Tính gần đúng giá trị của a và b nếu đường thẳng y = ax + b là tiếp tuyến của elip 1 49 22 =+ yx tại giao điểm có các tọa độ dương của elip đó và parabol y = 2x ĐS : 3849,0−≈a ; 3094,2≈b KỲ THI KHU VỰC GIẢI TOÁN TRÊN MÁY TÍNH CASIO CỦA BỘ GIÁO DỤC VÀ ĐÀO TẠO NĂM 2007 Lớp 12 THPT Thời gian : 150 phút ( Không kể thời gian giao đề ) Ngày thi : 13/3/2007 Bài 1 : Cho hàm số () )0(,11 ≠+=− xaxxf .Giá trị nào của α thỏa mãn hệ thức () ()32]1[6 1 =+− −fff 190 191 ĐS : 1107,1;8427,3 21 −≈≈ aa Bài 2 : Tính gần đúng giá trị cực đại và cực tiểu của hàm số () 54 172 2 2 ++ +− = xx xxxf ĐS : 4035,25;4035.0 ≈−≈ CDCT ff Bài 3 :Tìm nghiệm gần đúng ( độ , phút , giây ) của phương trình : sin x cos x + 3 ( sin x – cos x ) = 2 ĐS 0"'020"'01 360275202;360335467 kxkx +≈+≈ Bài 4 : Cho dãy số {}nu với n n n nu += cos1 a) Hãy chứng tỏ rằng , với N = 1000 , có thể tìm cặp hai chỉ số 1 , m lớn hơn N sao cho 21 ≥−uum ĐS : 2179,2) 10021005 >−uua b) Với N = 1 000 000 điều nói trên còn đúng không ? ĐS : 1342,2) 10000041000007 >−uub c) Với các kết quả tính toán như trên , Em có dự đoán gì về giới hạn của dãy số đã cho ( khi ∞→n ) ĐS : Không tồn tại giới hạn Bài 5 :Tìm hàm số bậc 3 đi qua các điểm ĐS : 22 1395; 1320 25019; 110 123; 1320 563 −=−=== dcba 1791,105≈khoangcach Bài 6 : Khi sản xuất vỏ lon sữa bò hình trụ , các nhà thiết kế luôn đặt mục tiuê sao cho chi phí nguyên liệu làm vỏ hộp ( sắt tây ) là ít nhất , tức là diện tích toàn phần của hình trụ là nhỏ nhất . Em hãy cho biết diện tích toàn phần của lon khi ta muốn có thể tích của lon là 3314cm ĐS : 7414,255;6834,3 ≈≈ Sr Bài 7 : Giải hệ phương trình +=+ +=+ yyxx xyyx 222 222 log2log72log log3loglog ĐS : 9217,0;4608,0 ≈≈ yx Bài 8 : Cho tam giác ABC vuông tại đỉnh A ( -1 ; 2 ; 3 ) cố định , còn các đỉnh B và C di chuyển trên đường thẳng đi qua hai điểm M ( -1 ; 3 ; 2 ) , N ( 1 ; 1 ; 3 ) . Biết rằng góc ABC bằng 030 , hãy tính tọa độ đỉnh B . ĐS : 3 37; 3 327; 3 321 ± = ± = ±− = zyx 192 193 và khoảng cách giữa hai điểm cực trị của nó A ( -4 ; 3 ) , B ( 7 ; 5 ), C ( -5 ; 6 ),D ( -3 ; -8 ). Bài 9 : Cho hình tròn O bán kính 7,5 cm , hình viên phân AXB , hình chữ nhật ABCD với hai cạnh AD = 6,5cm và DC = 12 cm có vị trí như hình bên a) Số đo radian của góc AOB là bao nhiêu ? b) Tìm diện tích hình AYBCDA ĐS : 5542,73;8546,1 =≈ SradgocAOB Bài 10 : Tính tỷ số giữa cạnh của khối đa diện đều 12 mặt ( hình ngũ giác đều ) và bán kính mặt cầu ngoại tiếp đa diện ĐS : 7136,0≈k 194 THI HỌC SINH GIỎI HÀ NỘI LỚP 12 BỔ TÚC THPT - 2004 Quy ước : Khi tính gần đúng chỉ lấy kết quả với 5 chữ số thập phân Bài 1 : Tính gần đúng giá trị cực đại và giá trị cực tiểu của hàm số 2 532 2 + ++ = x xxy ĐS : 48331,12−≈cdy ; 48331,2≈cty Bài 2 : Tính gần đúng giá trị lớn nhất và giá trị nhỏ nhất của hàm số () xxxf sin52cos3 −= ĐS : 09289,2)(max ≈xf ; 96812,3)(min −≈xf Bài 3 : Tính gần đúng thể tích của khối tứ diện ABCD biết rằng AB = AC = AD = 6dm , BC = BD = CD =4dm ĐS : 378888,12 dmV ≈ Bài 4 : Tính gần đúng tọa độ các giao điểm của đường thẳng 2x + 3y = 5 và elip 1 925 22 =+ yx ĐS : A(4,48646 ; -1,32431) , B( -1,72403 ; 2,81602) Bài 5 :Tính nghiệm gần đúng(độ , phút , giây) của phương trình : 2cos2x – 3sin2x = 1 Bài 6 : Tính gần đúng diện tích tam giác ABC có góc "'0 352452=A ; góc "'0 183740=B và AB = 5 dm ĐS : 245774,6 dmS ≈ 195 ĐS : 1 1 1 2 2 2 ( 3.9831; 4.2024) ( 1.0036; 1.2404) S x y S x y ≈ = =≈− =− Bài 3 : a) Tìm 3 nghiệm A,B,C với A < B < C ( tính tới 3 số thập phân của phương trình ) : 3 22 7 6 10 0x x x−++−= ĐS : 1.368 0.928 3.939 A B C ≈− ≈ ≈ b) Tìm 2 nghiệm a,b với a > b ( tính tới 3 số thập phân của phương trình ) 0254log725 5 sin15 8,4 4 37,22 =−− xexpi ĐS : 5.626 0.498 a b ≈ ≈− c) Gọi ( d ) là đường thẳng có phương trình dạng Ax + By + C = 0 và điểm M ( a,b )với A, B, C ,a, b đã tính ở trên. Tính khoảng cách từ điểm M đến đường thẳng ( d ) (tính đến 5 số thập phân ) ĐS : 2.55255MH ≈ Bài 4 : Tìm chữ số thập phân thứ 29109 sau dấu phẩy trong phép chia 2005:23 ĐS : 5 Bài 7 :Tính gần đúng tọa độ các giao điểm của hypebol 1 3616 22 =− yx và parapol xy 42 = ĐS : A ( 4,98646 ; 4,46608 ) ; B ( 4,98646 ; - 4,46608 ) Bài 8 : Tính gần đúng các nghiệm của phương trình 43 +=xx ĐS : 98748,31 −≈x ; 56192,12 ≈x Bài 9 : Tính gần đúng độ dài dây cung chung của hai đường tròn có các phương trình 012822 =+−++ yxyx và 056422 =−+−+ yxyx ĐS : 99037,3≈AB Bài 10 : Đồ thị hàm số 1523 +++= cxbxaxy đi qua các điểm A( 2 ; -4) ; B( 5 ; 3) ; C( -3 ; 6) ĐS : 120 73 =a ; 120 227 −=b ; 20 163 −=c ĐỀ THI “ GIẢI TOÁN NHANH BẰNG MÁY TÍNH CASIO fx- 570MS” DÀNH CHO HỌC VIÊN LỚP 12 BTVH NĂM HỌC 2005-2006 TẠI TP.HCM Thời gian: 60 phút Bài 1 :Đường tiếp tuyến tại điểm uốn của đồ thị hàm số: y = 1,26x3 + 4,85x2 – 2,86x + 2,14 có phương trình là y = ax +b . Tìm a , b (a, b tính tới 3 số thập phân) ĐS : 8.903 0.521 a b ≈− ≈− 196 197 ĐỀ THI MÁY TÍNH CASIO CỦA SỞ GIÁO DỤC VÀ ĐÀO TẠO PHÚ THỌ NĂM 2003-2004 LỚP 12 . Thời gian 150 phút Bài 1 : Cho tam giác ABC có các đỉnh A(5;4) , B(2;7) , C(-2;-1) .Tính góc A . ĐS : 64.153280 '0= ∧ A Bài 2 :Tìm nghiệm của phương trình 02cos8cossin5sin2 22 =+−− xxxx ĐS : 63.115236 002 −=x Bài 3 :Cho hàm số 2 132 − −+ = x xxy có đồ thị (C).Tìm tích các khoảng cách từ một điểm tùy ý của đồ thị đến hai đường tiệm cận với độ chính xác cao nhất . ĐS : 363961031,6 2 9 21 ==dd Bài 4 : Lấy 4 số nguyên a , b , c ,d ª [ 1 ; 50 ] sao cho a < b < c < d . 1)Chứng minh : b bb d c b a 50 502 ++≥+ ĐS : Do a, b , c, d là các số nguyên : 50;1 =≥da và ]50;1[,; ∈>cbbc nên 1+≥bc và b bb d b bd c b aS 50 5011 2 ++≥++≥+= Dấu bằng xảy ra khi và chỉ khi a = 1 ; d = 50 ; c = b + 1 . 2)Tìm giá trị nhỏ nhất của d c b aS += ĐS : 175 53 =S khi a = 1 ; b = 7 ; c = 8 và d = 50 Bài 5 : Tính giá trị của biểu thức ))(( ))(( ))(( ))(( ))(( ))(()( bcac bxaxc cbab cxaxb caba cxbxaxP kkk −− −− + −− −− + −− −− = khi x = 2004 ; k ª {0 ; 1 ;2 } , còn a, b, c là ba số thực phân biệt . ĐS : P(2004) = 1 khi k = 0 ; P(2004) = 2004 khi k = 1 ; P(2004) = 4016016 khi k = 2 ; Bài 6 : Tính chính xác tổng S = 1 x 1! +2 x 2! +3 x 3! + . . .+ 16 x 16! . ĐS : S = 355687428095999 Bài 7 : Cho 9log8log7log 876 ++=A 1) Viết quy trình bấm phím so sánh A với số 3,3 và cho biết kết quả so sánh . 2) Hày chứng minh cho nhận định đó . ĐS : A < 3,3 Bài 8 : Cho 14 sin2 14 sin1 pi pi − =B và 7 cos3 pi=C 1) Viết quy trình bấm phím so sánh B với C và cho biết kết quả so sánh . 2) Chứng minh cho nhận định đó ĐS : B > C Bài 9 : Giải phương trình ( tìm x với độ chính xác càng cao càng tốt ) 13 1 24log 2626 2 2004 −−= ++ + xx xx x ĐS : 370906723,1879385242,12,1 ±≈±=x 199198 Bài 10 : Hình chóp đều SABC đỉnh S có góc 030=ASB , AB = 422004 cm .Lấy các điểm 'B , 'C lần lượt trên SB , SC sao cho tam giác ''CAB có chu vi nhỏ nhất .Tính độ dài của '' ,CCBB với độ chính xác càng cao càng tốt . ĐS : cmCCBB 3346,218445'' ≈= ĐỀ THI MÁY TÍNH CASIO CỦA SỞ GIÁO DỤC VÀ ĐÀO TẠO CẦN THƠ NĂM 2002-2003 LỚP 12 . Thời gian 150 phút Bài 1 : Tìm tất cả các nghiệm gần đúng với 5 chữ số thập phân của phương trình . )1(31 24 −=+ xxx Bài 2 : Cho hàm số 1323 +−−= xxxy . Tìm gần đúng với độ chính xác 3 chữ số thập phân giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [ - 1,532 ; 2,5321 ] Bài 3 : Tìm ước chung lớn nhất của hai số sau : a = 1582370 và b = 1099647. Bài 4 : Cho điểm )3;5(M . Tìm tọa độ điểm A trên trục Ox và tọa độ điểm B trên đường thẳng (d) : y = 3x (với độ chính xác 5 chữ số thập phân) sao cho tổng MA + MB + AB nhỏ nhất . Bài 5 : Tím nghiệm gần đúng của phương trình 2sinx - 3x – 1 = 0 Bài 6 : Cho tam giác ABC nội tiếp đường tròn (O) . Dựng đường tròn ()1O tiếp xúc trong với (O) và tiếp xúc hai cạnh AC và BC 201 Cho biết BC = 15,08 cm ; AC = 19,70 cm ; '0 ^ 3582=C .Tính gần đúng với hai chữ số thập phân bán kính R của đường tròn (O) và bán kính 'R của đường tròn ()1O . Bài 7 : Cho n hình vuông iiii DCBA ( i = 1, . . . ,n ) có các đỉnh iiii DCBA ;;; ( i = 2, . . . ,n ) của hình vuông thứ i lần lượt là trung điểm của các cạnh 1111 ; −−−− iiii CBBA ; 1111 ; −−−− iiii ADDC của hình vuông thứ i – 1 . Cho biết hình vuông 1111 DCBA có cạnh bằng 1 . Tính gần đúng độ dài cạnh hình vuông thứ 100 Bài 8 : Tính giá trị gần đúng với 3 chữ số thập phân của x , y , z biết =++− =+ −=−− 3log2tan 2logtan3 33logtan2 z z eyx yx eyx Bài 9 : Cho A là điểm nằm trên đường tròn () 13 22 =+−yx và B là điểm nằm trên parabol 2xy =.Tìm khoảng cách lớn nhất có thể có của AB . Bài 10 : Người ta cắt một tờ giấy hình vuông cạnh bằng 1 để gấp thành một hình chóp tứ giác đều sao cho bốn đỉnh của hình vuông dán lại thành đỉnh của hình chóp .Tính cạnh đáy của khối chóp để thể tích lớn nhất
File đính kèm:
- Tuyen_tap_de_thi_may_tinh_Casio_2465_90182790.pdf