Đề thi tuyển sinh môn Toán Lớp 10 THPT - Ngày thi 14-7-2012 - Năm học 2012-2013 - Sở Giáo dục & Đào tạo Hải Dương (Có đáp án)

Câu 4(3,0 điểm): Cho nửa đường tròn tâm O đường kính AB = 2R (R là một độ dài cho trước). Gọi C, D là hai điểm trên nửa đường tròn đó sao cho C thuộc cung và . Gọi giao điểm của hai dây AD và BC là E, giao điểm của các đường thẳng AC và BD là F.

a) Chứng minh rằng bốn điểm C, D, E, F cùng nằm trên một đường tròn.

b) Tính bán kính của đường tròn đi qua C, E, D, F nói trên theo R.

c) Tìm giá trị lớn nhất của diện tích tam giác FAB theo R khi C, D thay đổi nhưng vẫn thỏa mãn giả thiết bài toán.

 

doc4 trang | Chia sẻ: Đạt Toàn | Ngày: 10/05/2023 | Lượt xem: 205 | Lượt tải: 0download
Bạn đang xem nội dung Đề thi tuyển sinh môn Toán Lớp 10 THPT - Ngày thi 14-7-2012 - Năm học 2012-2013 - Sở Giáo dục & Đào tạo Hải Dương (Có đáp án), để tải tài liệu về máy bạn hãy click vào nút TẢI VỀ
SỞ GIÁO DỤC & ĐÀO TẠO
HẢI DƯƠNG
ĐỀ CHÍNH THỨC
---------------
KỲ THI TUYỂN SINH LỚP 10 THPT 
NĂM HỌC 2012-2013
MÔN THI: TOÁN 
Thời gian làm bài: 120 phút (không kể thời gian giao đề)
Ngày thi: Ngày 14 tháng 7 năm 2012
(Đề thi gồm: 01 trang)
Câu 1(2,0 điểm): Giải các phương trình sau:
 	a) 	
	b) 	
Câu 2(2,0 điểm): Cho biểu thức:
 với a và b là các số dương khác nhau.
a) Rút gọn biểu thức: .
	b) Tính giá trị của A khi và .
Câu 3(2,0 điểm):
a) Tìm m để các đường thẳng và cắt nhau tại một điểm nằm trên trục tung.
b) Cho quãng đường từ địa điểm A tới địa điểm B dài 90 km. Lúc 6 giờ một xe máy đi từ A để tới B. Lúc 6 giờ 30 phút cùng ngày, một xe ô tô cũng đi từ A để tới B với vận tốc lớn hơn vận tốc xe máy 15 km/h (hai xe chạy trên cùng một con đường đã cho). Hai xe nói trên đều tới B cùng lúc. Tính vận tốc mỗi xe.
Câu 4(3,0 điểm): Cho nửa đường tròn tâm O đường kính AB = 2R (R là một độ dài cho trước). Gọi C, D là hai điểm trên nửa đường tròn đó sao cho C thuộc cung và . Gọi giao điểm của hai dây AD và BC là E, giao điểm của các đường thẳng AC và BD là F.
a) Chứng minh rằng bốn điểm C, D, E, F cùng nằm trên một đường tròn.
b) Tính bán kính của đường tròn đi qua C, E, D, F nói trên theo R.
c) Tìm giá trị lớn nhất của diện tích tam giác FAB theo R khi C, D thay đổi nhưng vẫn thỏa mãn giả thiết bài toán.
Câu 5(1,0 điểm): Không dùng máy tính cầm tay, tìm số nguyên lớn nhất không vượt quá S, trong đó .
------------------------------ Hết -------------------------------
Họ và tên thí sinh: Số báo danh: ..
Chữ ký của giám thị 1: .Chữ ký của giám thị 2: ..
SỞ GIÁO DỤC VÀ ĐÀO TẠO
HẢI DƯƠNG
ĐÁP ÁN VÀ BIỂU ĐIỂM CHẤM MÔN TOÁN
KÌ THI TUYỂN SINH LỚP 10 THPT
NĂM HỌC 2012 - 2013
Ngày thi: 14 tháng 07 năm 2012
I) HƯỚNG DẪN CHUNG.
Thí sinh làm bài theo cách khác nhưng đúng vẫn cho điểm tối đa..
Sau khi cộng điểm toàn bài, điểm lẻ đến 0,25 điểm.
II) ĐÁP ÁN VÀ BIỂU ĐIỂM CHẤM.
Câu
Ý
Nội dung
Điểm
1
a
Giải phương trình (1)	
1,00
(1) hoặc 
Vậy (1) có 2 nghiệm 
0,25
0,25
0,25
0,25
b
Giải phương trình (2)
1,00
(2) hoặc 
2x-3=1
2x-3=-1
Vậy (2) có 2 nghiệm x=2; x=1
0,25
0,25
0,25
0,25
2
a
Rút gọn biểu thức: .
1,00
0,25
0,25
0,25
0,25
b
Tính giá trị của A khi 
1,00
Có a+b=14; b-a=; ab=1
Do đó theo CM trên ta có A =
Nên 
Hay 
0,25
0,25
0,25
0,25
3
a
Tìm m để các đường thẳng và cắt nhau tại một điểm nằm trên trục tung.
1,00
Đường thẳng cắt trục tung tại điểm M(x;y): x=0; y=m
Đường thẳng cắt trục tung tại điểm N(x’;y’): x’=0; y’=3-2m
Do hệ số góc 2 đường thẳng khác nhau
Yêu cầu bài toán đã cho 3-2m=m m=1
Kết luận m=1
0,25
0,25
0,25
0,25
b
Cho quãng đường từ địa điểm A tới địa điểm B dài 90 km. Lúc 6 giờ một xe máy đi từ A để tới B. Lúc 6 giờ 30 phút cùng ngày, một xe ô tô cũng đi từ A để tới B với vận tốc lớn hơn vận tốc xe máy 15 km/h (hai xe chạy trên cùng một con đường đã cho). Hai xe nói trên đều tới B cùng lúc. Tính vận tốc mỗi xe.
1,00
Gọi vận tốc xe máy là x km/h(x>0). Khi đó vận tốc ô tô là x+15 (km/h)
0,25
Thời gian xe máy đi hết quãng đường AB là 
Thời gian xe ô tô đi hết quãng đường AB là ; 30’=
Theo bài ra ta có phương trình (*)
0,25
Giải được phương trình (*) có x = 45( t/m); x = -60(loại)
0,25
Vậy vận tốc xe máy là 45km/h; vận tốc xe ô tô là 45+15=60 (km/h)
0,25
4
a
Chứng minh rằng bốn điểm C, D, E, F cùng nằm trên một đường tròn
1,00
Vẽ hình đúng câu a)
Vì AB là đường kính nên ;
 tương tự 
AD cắt BC tại E, đt ACvà BD cắt nhau tại F
Do đó D và C cùng nhìn FE dưới một góc vuông nên C, D, E, F cùng nằm trên một đường tròn (đường kính EF)
0,25
0,25
0,25
0,25
b
Tính bán kính của đường tròn qua C,E,D,F theo R.
1,00
Vì =1200 nên CD=( bằng cạnh tam giác đều nội tiếp (O) )
Và =.
(Vì tam giác ABF nhọn nên FE nằm giữa FC và FD nên tứ giác CEDF nội tiếp đường tròn đường kính FE- Thí sinh không chỉ ra điều này cũng không trừ điểm)
Suy ra sđ = 600(của đường tròn đường kính FE , tâm I) do đó tam giác ICD đều hay bán kính cần tìm ID=CD= 
 0,25
0,25
0,25
0,25
c
Tìm giá trị lớn nhất của diện tích tam giác FAB theo R khi C, D thay đổi nhưng vẫn thỏa mãn giả thiết bài toán.
1,00
Gọi H là giao của các đường FE và AB, J là giao của IO và CD. Có . Do đó bài toán quy về tìm giá trị lớn nhất của FH
Có FH=FI+IH=
(Vì IJ là đường cao tam giác đều cạnh ; Tam giác COD cân đỉnh O góc = 1200 ; OI là trung trực của CD nên tam giác COJ vuông ở J có góc 
 = 300 hay OJ= OC/2=R/2)
Dấu bằng xảy ra khi F,I,O thẳng hàng, lúc đó CD song song với AB( cùng vuông góc với FO)
Vậy diện tích tam giác ABF lớn nhất bằng khi CD song song với AB
0,25
0,25
0,25
0,25
5
Không dùng máy tính cầm tay, tìm số nguyên lớn nhất không vượt quá S, trong đó 
1,00
Đặt thì là 2 nghiệm của phương trình 
Suy ra 
Tương tự có 
Do đó Trong đó 
Có 
Từ đó 
Vì 0< nên 0< hay
. Vậy số nguyên phải tìm là 2701.
0,25
0,25
0,25
0,25
.

File đính kèm:

  • docde_thi_tuyen_sinh_mon_toan_lop_10_thpt_ngay_thi_14_7_2012_na.doc