Toán 11 - Chương 1: Công thức lượng giác
I. Định nghĩa
Trên mặt phẳng Oxy cho đường tròn lượng giác tâm O bán kính R=1 và điểm M
trên đường tròn lượng giác mà sđ AM = β với 0 2 ≤ β ≤ π
Đặt α = β + π ∈ k2 ,k Z
Ta định nghĩa:
sin OK α =
cos OH α =
sin
tg
cos
α
α =
α
với cos 0 α ≠
cos
cot g
sin
α
α =
α
với sin 0
cos 2x 1 0⇔ − − ( ) 2 2 cos 2x 1 1cos 2x voâ nghieäm 4 ⎡ =⎢⇔ ⎢ = −⎢⎣ ( ) sin2x 0 k2x k x k Z 2 ⇔ = π⇔ = π ⇔ = ∈ Caùch 2: (**) ( )1 cos8x cos4x 1 0 2 ⇔ + − = ( ) 2 cos8x cos4x 2 0 2cos 4x cos4x 3 0 cos4x 1 3cos4x loaïi 2 ⇔ + − = ⇔ + − =⎡⎢⇔ ⎢ = −⎣ = ( )k4x k2 x k Z 2 π⇔ = π ⇔ = ∈ Caùch 3: phöông trình löôïng giaùc khoâng maãu möïc: (**) ⇔ cos6x cos2x 1 cos6x cos2x 1 = =⎡⎢ = = −⎣ Caùch 4: + − = ⇔ +cos8x cos4x 2 0 cos8x cos4x 2= ⇔ = =cos8x cos4x 1 ⇔ =cos4x 1 Baøi 58: (Ñeà thi tuyeån sinh Ñaïi hoïc khoái D, naêm 2005) Giaûi phöông trình: 4 4 3cos x sin x cos x sin 3x 0 4 4 π π⎛ ⎞ ⎛ ⎞+ + − − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ 2 = Ta coù: (*) ( )22 2 2 2 1 3sin x cos x 2sin x cos x sin 4x sin2x 02 2⎡ ⎤π⎛ ⎞⇔ + − + − + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ 2 = [ ]21 1 31 sin 2x cos4x sin2x 0 2 2 2 ⇔ − + − + − = ( )2 21 1 1 1sin 2x 1 2sin 2x sin2x 02 2 2 2⇔ − − − + − = 2sin 2x sin2x 2 0⇔ + − = ( ) sin2x 1 sin2x 2 loaïi =⎡⇔ ⎢ = −⎣ π⇔ = + π ∈ π⇔ = + π ∈ 2x k2 , k 2 x k , k 4 Baøi 59: (Ñeà th ïc khoái B, naêm 2004) i tuyeån sinh Ñaïi ho ( ) (− = − 25sin x 2 3 1 sinx tg x * )Giaûi phöông trình: Khi ñoù: (*) cos x 0 sin x 1≠ ⇔ ≠ ± Ñieàu kieän: ( ) 22sin x5sin x 2 3 1 sin x cos x⇔ − = − ( ) 2 2sin x5sin x 2 3 1 sin x 1 sin x⇔ − = − − 23sin x5sin x 2 1 sin x ⇔ − = + 22sin x 3sin x 2 0⇔ + − = ( ) ( ) 1sin x nhaändosin x 1 2 sin x 2 voâ nghieäm ⎡ = ≠⎢⇔ ⎢ = −⎢⎣ ± ( )5x k2 x k2 k 6 6 π π⇔ = + π ∨ = + π ∈ Z ( )1 12sin3x 2cos3x * sin x cos x − = + Baøi 60: Giaûi phöông trình: Luùc ñoù: (*) Ñieàu kieän: sin2x 0≠ ( ) 1 12 sin3x cos3x sin x cos x ⇔ − = + ( ) ( )3 3 1 12 3 sin x cos x 4 sin x cos x sin x cos x⎡ ⎤⇔ + − + = +⎣ ⎦ ( ) ( )2 2 sin x cos x2 sin x cos x 3 4 sin x sin x cos x cos x sin x cos x+⎡ ⎤⇔ + − − + =⎣ ⎦ ( ) 1sin x cos x 2 8sin x cos x 0 sin x cos x ⎡ ⎤⇔ + − + − =⎢ ⎥⎣ ⎦ ( ) 2sin x cos x 4sin2x 2 0 sin2x ⎡ ⎤⇔ + − −⎢ ⎥⎣ ⎦ = ( )2 tgx 1sin x cos x 0 nhaän so vôùiñieàu kieän1sin2x 1 sin2x4sin 2x 2sin2x 2 0 2 = −⎡+ =⎡ ⎢⇔ ⇔ −⎢ ⎢ = ∨ =− − =⎣ ⎣ π π π π⇔ = − + π ∨ = + π ∨ = − + π ∨ = + π ∈ 7x k 2x k2 2x k2 2x k2 , k 4 2 6 6 π π π⇔ = ± + π ∨ = − + π ∨ = + π ∈ 7x k x k x k , k 4 12 12 ( ) ( )+ − − =+ 2cos x 2sin x 3 2 2 cos x 1 1 * 1 sin 2x Baøi 61: Giaûi phöông trình: sin2x 1 x m 4 π≠ − ⇔ ≠ − + π Ñieàu kieän: Luùc ñoù: (*) 22sin x cos x 3 2 cos x 2cos x 1 1 sin2x⇔ + − − = + 22cos x 3 2 cos x 2 0⇔ − + = ( )⇔ = =2cos x hay cos x 2 voâ nghieäm 2 ( ) x k2 4 x k '2 loaïi do ñieàu kieän 4 π⎡ = + π⎢⇔ ⎢ π⎢ = − + π⎢⎣ x k2 4 ⇔ = + π π Baøi 62: Giaûi phöông trình: ( )x 3x x 3x 1cos x.cos .cos sin xsin sin * 2 2 2 2 2 − = Ta coù: (*) ( ) ( )1 1cos x cos2x cos x sin x cos2x cos x 2 2 1 2 ⇔ + + − = 2cos x.cos2x cos x sin x cos2x sin x cos x 1⇔ + + − = cos x⇔ + = − + ( ) 2cos2x cos x sin x 1 cos x sin x ( ) ( )cos2x cos x sin x sin x sin x cos x⇔ + = + ( ) ( ) ( )cos x sin x cos2x sin x 0 * *⇔ + − = ( ) ( )2cos x sin x 1 2sin x sin x 0⇔ + − − = 2 cos x sin x 2sin x sin x 1 0 = −⎡⇔ ⎢ + − =⎣ tgx 1 sin x 1 1sin x 2 ⎡⎢ = −⎢⇔ =⎢⎢ =⎢⎣ − ( ) x k 4 x k2 k 2 5x k2 x k2 6 6 π⎡ = − + π⎢⎢ π⎢⇔ = − + π ∈⎢⎢ π π⎢ = + π ∨ = + π⎢⎣ Z Caùch khaùc: (**) tgx 1 cos2x sin x cos x 2 π⎛ ⎞⇔ = − ∨ = = −⎜ ⎟⎝ ⎠ ( )34 cos x 3 2 sin2x 8cos x *+ = Baøi 63: Giaûi phöông trình: Ta coù: (*) 34 cos x 6 2 sin x cos x 8cos x 0⇔ + − =( )2cos x 2cos x 3 2 sin x 4 0⇔ + − = ( )2cos x 2 1 sin x 3 2 sin x 4 0⎡ ⎤⇔ − + −⎣ ⎦ = 2cos x 0 2sin x 3 2 sin x 2 0⇔ = ∨ − + = ( ) cos x 0 2sin x 2 sin x 2 voâ nghieäm =⎡⎢⎢⇔ =⎢⎢ =⎢⎣ 2x k sin x sin 2 2 π π⇔ = + π ∨ = = 4 ( )3x k x k2 x k2 k 2 4 4 π π π⇔ = + π ∨ = + π ∨ = + π ∈ Z Baøi 64 : Giaûi phöông trình: ( )cos 2x cos 2x 4sin x 2 2 1 sin x * 4 4 π π⎛ ⎞ ⎛ ⎞+ + − + = + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ( ) (*) ( )2cos2x.cos 4sin x 2 2 1 sin x 4 π⇔ + = + − ( ) ( ) ( ) 2 2 2 1 2sin x 4 2 sin x 2 2 0 2 2 sin x 4 2 sin x 2 0 ⇔ − + + − − = ⇔ − + + = ( )⇔ − + + =22 sin x 2 2 1 sin x 2 0 ( )⎡⎢si =⇔ ⎢ =⎢⎣ n x 2 loaïi 1sin x 2 π π⇔ = + π = + π ∈ 5x k2 hay x k2 , k 6 6 Baøi 65 ( ) ( )+2g x 2 2 = +23 cot sin x 2 3 2 cos x * : Giaûi phöông trình : Ñieàu kieän: (*) sin x 0 cos x 1≠ ⇔ ≠ ± Chia hai veá (*) cho 2sin x ta ñöôïc: ( )24 2cos x cos x3 2 2 2 3 2sin x sin x⇔ + = + vaø sin x 0≠ 2 cos xt sin x =Ñaët ta ñöôïc phöông trình: ( )23t 2 t 2− + +2 3 2 0 2t 2 t 3 = ⇔ = ∨ = * Vôùi 2t 3 = ta coù: 2 cos x 2 3sin x = ( ) ( ) (co nhaän 1⎢⎣ ) 2 2 3cos x 2 1 cos x 2cos x 3cos x 2 0 cos x 2 loaïi 1s x do cos x 2 ⇔ = − ⇔ + − = ⎡ = −⎢⇔ ⎢ = ≠ ± ( )x k2 k 3 π⇔ = ± + π ∈ Z * Vôùi t 2= ta coù: =2 cos x 2 sin x ( ) ( ) ( ) ⇔ = − ⇔ + − = ⎡ = −⎢⇔ ⎢ = ≠ ±⎢⎣ π⇔ = ± + π ∈x k2 , k 2 2 cos x 2 1 cos x 2 cos x cos x 2 0 cos x 2 loaïi 2cos x nhaän do cos x 1 2 4 Baøi 66 : Giaûi phöông trình: ( )+ − − =2 24 sin 2x 6sin x 9 3cos 2x 0 * cos x ( ) ( ) ( ) ( )2 t cos2x t 1 t 1 4t 4 0 t 1 t cos2x t 1⎧ = ≤ ⎧ = ≤ − − + = = ±⎪⎪ ⎩⎩ ⎪ ⎪⇔⎨ ⎨ ( ) ⇔ = ± ⇔ = π⇔ = ⇔ = π ⇔ = ∈ 2cos 2x 1 cos 2x 1 ksin 2x 0 2x k x , k Z 2 3x 0, 2x 0, .Vaäy c 6 ⎛ ⎞∈ ⎜ ⎟⎝ ⎠ os2x t ,112 2 ⎛ ⎞π π⎛ ⎞∈ ⇔ = ∈ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ − + = − ⇔ − = ≠2 b/ Ta coù : ⎝ ⎠ 2(⇔ ) ( ) ( ) ( ) Vaäy (**) t-1 4t 3 a 1 t 4t 3 a do t 1 eùt ( )2 3y P4t 3 treân ,1 2 ⎛ ⎞= − ⎜ ⎟⎜ ⎟⎝ ⎠ X 3y ' 8t 0 t ,1 2 ⎛ ⎞⇒ = > ∀ ∈ ⎜ ⎟⎜ ⎟⎝ ⎠ ñ ù (*) coù nghieäm treâ ( ) ( ) ⎛ ⎞π⎛ ⎞ ⇔ = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ 30, d : y a caét P treân ,1 2 2 Do o n ( )3y a y 2 0 a 1 1<⎜ ⎟⎜ ⎟⎝ ⎠ < < BAØI TAÄP ⎛ ⎞⇔ < ⇔ ûi ùc phöông trình sau : 1. Gia ca a/ sin4x = tgx b/ 4 4 4 9sin π πx sin x x sin x 4 4 8 ⎛ ⎞ ⎛ ⎞+ + + − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ c/ tgx cot gx 4+ = d/ ( ) 2sin x 3 2 2cos x 2sin x 1 1 1 sin2x − − − =− e/ 44 cos x 3 2 sin2x 8cos x+ = f/ 1 1 2 cos sin2x sin4x + = x g/ sin2x 2 sin x 1 4 π⎛ ⎞+ −⎜ ⎟⎝ ⎠ = h/ ( ) ( )2 2sin x 1 4 sin x 1 cos 2x sin 2x 4 4 π π⎛ ⎞ ⎛ ⎞− = − − + − +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ k/ 24xcos cos x 3 = l/ xtg .cos x sin2x 0 2 + = m/ 1 3tgx 2sin2x+ = n/ cot gx tgx 2tg2x= + p/ + =2 3x 4x2cos 1 3cos 5 5 q/ = 23cos4x 2cos 3x 1− r/ 2 3x2cos 1 3cos2x+ = 2 x s/ cos x tg 1 2 + = t/ u/ 23tg2x 4tg3x tg 3x.tg2x− = 2 3cos x.cos4x cos2x.cos3x cos 4x 2 + + = v/ 2 2 2 2 3cos x cos 2x cos 3x cos 4x 2 + + + = w/ x/ sin4x tgx= 6 6 213cos x sin x cos 2x 8 + = y/ 3 x 1 3xsinπ π⎞ ⎛ ⎞− = + sin 2 ⎛⎜ ⎟ ⎜ ⎟⎠ ( 1 ) a/ Giaûi phöông trình khi a = 1. 10 2 2 10⎝ ⎠ ⎝ . 6 6sin x cos x a sin 2x+ =2 1a 4 ≥ ) b/ Tìm a ñeå (1) coù nghieäm (ÑS : 3. Cho phöông trình ( )6 62 2cos x sin x 2mtg2x 1cos x sin x + =− a/ Giaûi phöông trình khi m = 1 8 1m 8 ≥ b/ Tìm m sao cho (1) coù nghieäm (ÑS : ) . 4 Tìm m ñeå phöông trình x kπ sin4x mtgx coù nghieäm= ≠ 1ÑS : m 4 2 ⎛ ⎞− < <⎜ ⎟⎝ ⎠ 5. Tìm m ñeå phöông trình : coù ñuùng 7 nghieäm treân cos3x cos2x mcosx 1− + − = 0 ,2 2 π⎛ ⎞− π⎜ ⎟⎝ ⎠ ( )ÑS :1 m 3< < 6. Tìm m ñeå phöông trình : ( ) ( )4 44 sin x cos 6 6 2x 4 sin x c 4x mos x sin− + = coù nghieäm + − 1ÑS : m 1 8 ⎛ ⎞− ≤ ≤ ⎜⎝ ⎟⎠ 7. Cho phöông trình : 2 2 26sin x sin x mcos 2x− = (1) a/ Giaûi phöông trình khi m = 3 b/ Tìm m ñeå (1) coù nghieäm ( )ÑS :m 0≥ 8. Tìm m ñeå phöông trình : ( )4 22m 1msin x cos4x sin4x sin x 0 4 4 ++ + − = coù hai nghieäm phaân bieät treân , 4 2 π π⎛ ⎞⎜ ⎟⎝ ⎠ 1ÑS :2 5 4 m 2 ⎛ ⎞− < <⎜ ⎟⎝ ⎠ 9. Tìm m ñeå phöông trình : coù nghieäm ( )6 6 4 4sin x cos x m sin x cos x+ = + 1ÑS : m 1 2 ⎛ ⎞≤ ≤⎜ ⎟⎝ ⎠ 10. Cho phöông trình : Tìm a ñeå phöông trình coù nghieäm 2 2cos4x cos 3x a sin x= + x 0, 2 π⎛ ⎞∈ ⎜ ⎟⎝ ⎠ ( )ÑS :0 a 1< < Th.S Phạm Hồng Danh TT luyện thi đại học CLC Vĩnh Viễn CHÖÔNG IV: PHÖÔNG TRÌNH BAÄC NHAÁT THEO SIN VAØ COSIN (PHÖÔNG TRÌNH COÅ ÑIEÅN) ( ) ( )a sin u bcosu c * . a, b R \ 0+ = ∈ Caùch 1 : Chia 2 veá phöông trình cho + ≠2 2a b 0 Ñaët [ ] 2 2 2 2 a bcos vaø sin vôùi 0,2 a b a b α = α = α ∈ π + + ( ) ( ) 2 2 2 2 cThì * sinu cos cosu sin a b csin u a b ⇔ α + α = + ⇔ + α = + Caùch 2 : Neáu laø nghieäm cuûa (*) thì : u k2= π + π asin bcos c b cπ + π = ⇔ − = Neáu ñaët u k≠ π + π2 ut tg 2 = thì (*) thaønh : 2 2 2 2t 1 ta b 1 t 1 t −+ =+ + c ( ) ( ) ( )2b c t 2at c b 0 1 vôùi b c 0⇔ + − + − = + ≠ Phöông trình coù nghieäm ( ) ( )2' a c b c b 0⇔ Δ = − + − ≥ 2 2 2 2 2 2a c b a b c⇔ ≥ − ⇔ + ≥ Giaûi phöông trình (1) tìm ñöôïc t. Töø ut tg 2 = ta tìm ñöôïc u. Baøi 87 : Tìm 2 6x , 5 7 π π⎛∈ ⎜⎝ ⎠ ⎞⎟ thoûa phöông trình : ( )cos7x 3 sin7x 2 *− = − Chia hai veá cuûa (*) cho 2 ta ñöôïc : ( ) ⇔ − = − π π⇔ − + = π π⎛ ⎞⇔ − =⎜ ⎟⎝ ⎠ 1 3 2* cos7x sin7x 2 2 2 2sin cos7x cos sin7x 6 6 sin 7x sin 6 4 2 π π π π⇔ − = + π − = +37x k2 hay 7x h2 6 4 6 4 π , ( )∈k, h Z π π π π⇔ = + = + ∈ 5 k2 11 h2x hay x , k , 84 7 84 7 h Do 2 6x , 5 7 π π⎛∈ ⎜⎝ ⎠ ⎞⎟ neân ta phaûi coù : π π π π π π π π< + < < + < ∈ 2 5 k2 6 2 11 h2 6hay ( k, h ) 5 84 7 7 5 84 7 7 ⇔ < + < < + < ∈ 2 5 k2 6 2 11 h2 6hay ( k, h ) 5 84 7 7 5 84 7 7 Suy ra k = 2, =h 1,2 5 4 53 11 2 35Vaäy x x 84 7 84 84 7 84 11 4 59x 84 7 84 π π π π= + = π ∨ = + = π π∨ = + = π π Baøi 88 : Giaûi phöông trình ( )33sin3x 3 cos9x 1 4sin 3x *− = + Ta coù : ( ) ( )3* 3sin 3x 4sin 3x 3 cos9x 1⇔ − − = sin9x 3 cos9x 1⇔ − = 1 3sin9x cos9x 2 2 ⇔ − 1 2 = 1sin 9x sin 3 2 π π⎛ ⎞⇔ − = =⎜ ⎟⎝ ⎠ 6 π π π π⇔ − = + π − = + π ∈ 59x k2 hay 9x k2 , k 3 6 3 6 π π π π⇔ = + = + ∈ k2 7 k2x hay x , 18 9 54 9 k Baøi 89 : Giaûi phöông trình ( )1tgx sin2x cos2x 2 2cos x 0 * cos x ⎛ ⎞− − + − =⎜ ⎟⎝ ⎠ Ñieàu kieän : cos x 0≠ Luùc ñoù : ( ) sin x 2* sin2x cos2x 4cos x 0 cos x cos x ⇔ − − + − = 2sin x sin2x cos x cos x cos2x 4 cos x 2 0⇔ − − + − = ( )2sin x 1 2cos x cos x cos2x 2cos2x 0⇔ − − + = = ≠ sin xcos2x cosxcos2x 2cos2x 0⇔ − − + = ⇔ = − − +c os2x 0 hay sin x cos x 2 0 ( ) ( ) ⎡ = = − =⎢⇔ ⎢ + = + <⎢⎣ 2 2 2 2 cos 2x 0 nhaän do cos 2x 2cos x 1 0 thì cos x 0 sin x cos x 2 voâ nghieäm vì 1 1 2 ( ) π⇔ = + ∈ π π⇔ = + ∈ 2x 2k 1 , k 2 kx , k 4 2 Baøi 90 : Giaûi phöông trình ( )3 18sin x * cos x sin x = + Ñieàu kieän : sin2x 0≠ Luùc ñoù (*) 28sin xcosx 3 sin x cosx⇔ = + ( ) ( ) ⇔ − = + ⇔ − = − ⇔ − + = − ⇔ = − + π⎛ ⎞⇔ = +⎜ ⎟⎝ ⎠ π π⇔ = + + π ∨ = − − + π π π⇔ = + π ∨ = − + ∈ 4 1 cos 2x cos x 3 sin x cos x 4 cos 2x cos x 3 sin x 3cos x 2 cos 3x cos x 3 sin x 3cos x 3 1cos 3x sin x cosx 2 2 cos 3x cos x 3 3x x k2 3x x k2 3 3 kx k x , k 6 12 2 π Nhaän so vôùiñieàu kieän sin2x 0≠ Caùch khaùc : (*) 28sin xcosx 3 sin x cosx⇔ = + ( hieån nhieân cosx = 0 hay sinx = 0 khoâng laø nghieäm cuûa pt naøy ) ⇔ − = +28(1 cos x) cos x 3 sin x cos x ⇔ − = +38cos x 8cos x 3 sin x cos x ⇔ − = −36cos x 8cos x 3 sin x cos x ⇔ − = −3 1 34 cos x 3cos x cos x sin x 2 2 π⎛ ⎞⇔ = +⎜ ⎟⎝ ⎠ π π⇔ = + + π ∨ = − − + π π π⇔ = + π ∨ = − + ∈ π cos 3x cos x 3 3x x k2 3x x k2 3 3 kx k x , k 6 12 2 Baøi 91 : Giaûi phöông trình ( )9sin x 6cos x 3sin 2x cos2x 8 *+ − + = Ta coù : (*) ( )29sin x 6cos x 6sin x cos x 1 2sin x 8⇔ + − + − = ( ) ( ) ⇔ − − + − ⎛ ⎞⇔ − − − −⎜ ⎟⎝ ⎠ 26 cos x 6sin x cos x 2sin x 9sin x 7 0 76cos x 1 sin x 2 sin x 1 sin x 0 2 = = ( ) ⎛ ⎞⇔ − = + − =⎜ ⎟⎝ ⎠ =⎡⎢⇔ + = + <⎢⎣ 2 2 2 71 sin x 0 hay 6 cos x 2 sin x 0 2 sin x 1 6cos x 2sin x 7 voâ nghieäm do 6 2 7 π⇔ = + π ∈ x k2 , k 2 Baøi 92 : Giaûi phöông trình: ( )sin 2x 2cos2x 1 sin x 4 cos x *+ = + − Ta coù : (*) ( )22sin x cos x 2 2cos x 1 1 sin x 4 cos x⇔ + − = + − ( ) ⇔ − + + − = ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⇔ − + − + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⇔ − = + + = + < 2 2 2 2 2sin x cos x sin x 4 cos x 4 cos x 3 0 1 1 32sin x cos x 4 cos x cos x 0 2 2 2 1cos x 0 hay 2sin x 4 cos x 6 0 voâ nghieäm do 2 4 6 2 π⇔ = ± + πx k 3 2 Baøi 93 : Giaûi phöông trình ( )2sin 2x cos2x 7sin x 2cos x 4 *− = + − Ta coù : (*) ( )24 sin x cos x 1 2sin x 7sin x 2cos x 4⇔ − − = + − ( ) ( ) ( ) ( ) ( ) ( ) ( ) ⇔ − + − + = ⎛ ⎞⇔ − + − −⎜ ⎟⎝ ⎠ ⇔ − + − − = ⇔ − = + − = + < 2 2 2 2 2 cos x 2sin x 1 2sin x 7 sin x 3 0 12 cos x 2sin x 1 2 sin x sin x 3 2 2 cos x 2sin x 1 2sin x 1 sin x 3 0 2sin x 1 0 hay 2 cos x sin x 3 0 voâ nghieäm vì 1 2 3 π π⇔ = + π ∨ = + π ∈ 5x k2 x k2 , k 6 6 Baøi 94 : Giaûi phöông trình ( )sin 2x cos2x 3sin x cos x 2 *− = + − Ta coù (*) ( )22sin x cos x 1 2sin x 3sin x cos x 2⇔ − − = + − ( ) ( ) ( ) ( ⇔ − + − + ⇔ − + − − ⇔ − = + − = 2cos x 2sin x 1 2sin x 3sin x 1 0 cos x 2sin x 1 sin x 1 2sin x 1 0 2sin x 1 0 hay cos x sin x 1 0 ) = = π⎛ ⎞⇔ = −⎜ ⎟⎝ ⎠ 1sin x hay 2 cos x x 1 2 4 = π π π π⇔ = + π ∨ = + π − = ± + π ∈ 5x k2 x k2 hay x k2 , k 6 6 4 4 π π π⇔ = + π ∨ = + π = + π ∨ = π ∈ 5x k2 x k2 hay x k2 x k2 , k 6 6 2 Baøi 95 : Giaûi phöông trình ( ) ( )2sin2x 3 cos2x 5 cos 2x *6π⎛ ⎞+ − = −⎜ ⎟⎝ ⎠ Ñaët t sin2x 3 cos2x= + , Điều kiện a b t a b− + = − ≤ ≤ = +2 2 2 22 2 Thì 1 3t 2 sin2x cos2x 2cos 2x 2 2 ⎛ ⎞ 6 π⎛ ⎞= + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ − Vaäy (*) thaønh: − = ⇔ − − = ⇔ = ∨ = −2 2t 5t 5 2t t 10 0 t ( loaïi ) t 2 2 2 Do ñoù ( )* ⇔ cos 2x 1 6 π⎛ ⎞− = −⎜ ⎟⎝ ⎠ π π⇔ − = π + π ⇔ = +72x k2 x k 6 1 π 2 Baøi 96 : Giaûi phöông trình ( )+ + =32 cos x cos2x sin x 0 * Ta coù (*) 3 22 cos x 2 cos x 1 sin x 0⇔ + − + = ( ) ( )( ) ( ) ( )( ) 2 2 2 cos x cos x 1 1 sin x 0 2 1 sin x 1 cosx 1 sin x 0 1 sin x 0 hay 2 1 sin x 1 cosx 1 0 ⇔ + − + = ⇔ − + − − = ⇔ − = + + − = 2 1 sin x 0 hay 1 2sin x cos x 2(sin x cosx) 0 1 sin x 0 hay (sin x cos x ) 2(sin x cos x) 0 ⇔ − = + + + = ⇔ − = + + + = ( )2 2 2sin x 1 haysin x cos x 0 hay sin x cos x 2 0 voâ nghieäm do: 1 1 2⇔ = + = + + = + < sin x 1 hay tgx 1⇔ = = − x k2 hay x k2 , k 2 4 π π⇔ = + π = − + π ∈¢ Baøi 97 : Giaûi phöông trình ( )21 cos2x1 cot g2x *sin 2x −+ = Ñieàu kieän : sin 2x 0 cos2x 1≠ ⇔ ≠ ± Ta coù (*) 2 1 cos2x 11 cot g2x 1 cos2x1 cos 2x 1cot g2x 1 1 cos2x cos2x cos2x sin 2x 1 cos2x −⇔ + = = +− ⇔ = −+ −⇔ = + Ta coù : 3sin x sin x cos x 2 2 π π⎛ ⎞ ⎛ ⎞− = − − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ 2 2 6tg 6sin .cos 3sin 2 1 tg cos α α= α = α vôùi cos 0+ α α α ≠ Vaäy : ( ) ( )5 4 cosx* 3sin 2 ñieàu kieän sin x 0 vaø cos 0 sin x −⇔ = α ≠ α ≠ 3sin 2 sin x 4 cosx 5⇔ α + = a/ Khi 4 πα = − ta ñöôïc phöông trình ( )3sin x 4 cos x 5 1− + = ( Hieån nhieân sin x = 0 khoâng laø nghieäm cuûa (1)) 3 4sin x cosx 1 5 5 ⇔ − + = Ñaët 3 4cos vaø sin vôùi 0 2 5 5 ϕ = − ϕ = < ϕ < π Ta coù pt (1) thaønh : ( )sin x 1ϕ+ = x k2 2 x k 2 π⇔ ϕ+ = + π π⇔ = −ϕ+ + π2 ≠ b/ (**) coù nghieäm ( )23sin 2 16 25 vaø cos 0⇔ α + ≥ α 2 2 sin 2 1 vaø cos 0 sin 2 1 cos2 0 k ,k 4 2 ⇔ α ≥ α ≠ ⇔ α = ⇔ α = π π⇔ α = + ∈¢ BAØI TAÄP 1. Giaûi caùc phöông trình sau : a/ ( )2 2 sin x cosx cosx 3 cos2x+ = + b/ ( ) (2 cos x 1 sin x cos x 1− + ) = c/ ( )2 cos2x 6 cosx sin x= − d/ 3sin x 3 3 cos x= − e/ 2 cos3x 3 sin x cos x 0+ + = f/ cos x 3 sin x sin 2x cos x sin x+ = + + g/ 3cosx 3 sin x cosx 3 sin x 1 + = + + h/ si n x cos x cos2x+ = k/ 34sin x 1 3sin x 3 cos3x− = − i / 63cosx 4sin x 6 3cos x 4sin x 1 + + =+ + j/ cos7x cos5x 3 sin 2x 1 sin 7x sin 5x− = − m/ ( )4 44 cos x sin x 3 sin 4x 2+ + = p/ 2 2cos x 3 sin 2x 1 sin x− = + q/ ( )4sin 2x 3cos2x 3 4sin x 1− = − r/ 2tgx sin 2x cos2x 4 cosx cosx − − = − + s/ ( ) 2 x2 3 cosx 2sin 2 4 1 2 cosx 1 π⎛ ⎞− − −⎜ ⎟⎝ ⎠ =− 2. Cho phöông trình cosx + msinx = 2 (1) a/ Giaûi phöông trình m 3= b/ Tìm caùc giaù trò m ñeå (1) coù nghieäm (ÑS : m 3≥ ) 3. Cho phöông trình : ( )m sin x 2 m cosx 2 1 m 2 cosx m 2sin x − −=− − a/ Giaûi phöông trình (1) khi m = 1 b/ Khi m 0 vaø m 2≠ ≠ thì (1) coù bao nhieâu nghieäm treân [ ]π π20 ,30 ? (ÑS : 10 nghieäm) 4. Cho phöông trình ( )2sin x cosx 1 a 1 sin x 2 cosx 3 + + =− + a/ Giaûi (1)khi 1a 3 = b/ Tìm a ñeå (1) coù nghieäm Th.S Phạm Hồng Danh TT Luyện thi đại học CLC Vĩnh Viễn CHÖÔNG VI: PHÖÔNG TRÌNH ÑAÚNG CAÁP 2 2a sin u bsinu cosu c cos u d+ + = Caùch giaûi : ( )Tìm nghieäm u k luùc ñoù cosu 0 vaø sinu 1 2 π• = + π = = ± 2Chia hai veá phöông trình cho cos u 0 ta ñöôïc phöông trình :• ≠ ( )2 2atg u btgu c d 1 tg u+ + = + Ñaët ta coù phöông trình : t tgu= ( ) 2a d t bt c d 0− + + − = Giaûi phöông trình tìm ñöôïc t = tgu Baøi 127 : Giaûi phöông trình ( )2 2cos x 3 sin2x 1 sin x *− = + Vì cosx = 0 khoâng laø nghieäm neân Chia hai veá cuûa (*) cho 2cos 0≠ ta ñöôïc ( ) ( )2 2* 1 2 3tgx 1 tg x tg x⇔ − = + + Ñaët t = tgx ta coù phöông trình : 22t 2 3t 0+ = t 0 t 3⇔ = ∨ = − Vaäy ( )* π⇔ = = − ⇔ = π = − + π ∈ tgx 0hay tgx 3 x k hay x k , k 3 Baøi 128 : Giaûi phöông trình ( )3 3 2cos x 4sin x 3cos x sin x sin x 0 *− − + = • Khi x k thì cos x 0vaø sin x 2 π= + π = = ±1 thì (*) voâ nghieäm • Do khoâng laø nghieäm neân chia hai veá cuûa (*) cho cos3x =cos x 0 ta coù (*) ( )3 2 21 4tg x 3tg x tgx 1 tg x 0⇔ − − + + = ( ) ( ) ⇔ + − − = ⇔ + − = ⇔ = − ∨ = ± π π⇔ = − + π ∨ = ± + π ∈ 3 2 2 3tg x 3tg x tgx 1 0 tgx 1 3tg x 1 0 3tgx 1 tgx 3 x k x k , k 4 6 Baøi 129 : Giaûi phöông trình ( )4 2 2 43cos x 4sin x cos x sin x 0 *− + = Do cosx = 0 khoâng laø nghieäm neân chia hai veá cuûa (*) cho 4cos x 0≠ Ta coù : (*) 2 43 4tg x tg x 0⇔ − + = ⇔ = ∨ = π π⎛ ⎞ ⎛⇔ = ± = ± ∨ = ±⎜ ⎟ ⎜⎝ ⎠ ⎝ π π⇔ = ± + π ∨ = ± + π ∈ ⎞⎟⎠ 2 2tg x 1 tg x 3 tgx 1 tg tgx tg 4 3 x k x k , k 4 3 Baøi 130 : Giaûi phöông trình ( )sin 2x 2tgx 3 *+ = Chia hai veá cuûa (*) cho 2cos x 0≠ ta ñöôïc (*) 2 2 2sin x cos x 2tgx 3 cos x cos x cos x ⇔ + = 2 ( ) ( )2 22tgx 2tgx 1 tg x 3 1 tg x⇔ + + = + 3 2 t tgx 2t 3t 4t 3 0 =⎧⇔ ⎨ − + − =⎩ ( ) ( ) =⎧⎪⇔ ⎨ − − +⎪⎩ 2 t tgx t 1 2t t 3 0= ⇔ = π⇔ = + π ∈ tgx 1 x k , k 4 Baøi 131 : Giaûi phöông trình ( )3sin x sin 2x sin 3x 6cos x *+ = ( ) 2 3* 2sin x cos x 3sin x 4sin x 6cos x⇔ + − = 3 ( )• = = ±Khi cos x 0 ( sin x 1 ) thì * voâ nghieäm • Chia hai veá phöông trình (*) cho 3cos x 0≠ ta ñöôïc ( )* ⇔ 2 32 22sin x 3sin x 1 sin x. 4cos x cos x cos x cos x+ − 3 6= ( ) ( ) ( ) ⇔ + + − = ⇔ − − + = ⇔ − − = ⇔ = = α ∨ = ± π⇔ = α + π ∨ = ± + π ∈ α = 2 2 3 3 2 2 2tg x 3tgx 1 tg x 4tg x 6 tg x 2tg x 3tgx 6 0 tgx 2 tg x 3 0 tgx 2 tg tgx 3 x k x k , k ( vôùi tg 3 2) Baøi 132 : (Ñeà thi tuyeån sinh Ñaïi hoïc khoái A, naêm 2003) Giaûi phöông trình ( )2cos2x 1cot gx 1 sin x sin2x * 1 tgx 2 − = + −+ Ñieàu kieän sin 2x 0 vaø tgx 1≠ ≠ − Ta coù : ( )2 22 2 cos x cos x sin xcos2x cos x sin x sin x1 tgx cos x sin x1 cos x −−= =+ ++ ( ) (= − = − +cos x cos x sin x do tgx 1 neân, sin x cos x 0)≠ Do ñoù : ( ) ( )2 2cos x 1* 1 cos x sin x cos x sin x sin2xsin x 2⇔ − = − + − ( ) ( ) ( ) −⇔ = − ⇔ − = − ⇔ − = = − 2 cos x sin x 1 sin 2x sin x cos x sin x sin x cos x sin x cos x sin x 0 hay 1 sin x cos x sin x (**) ( ) ( ) = ≠⎡⎢⇔ ⎢ = − ≠⎢⎣ 2 2 tgx 1 nhaän so vôùi tgx 1 1 sin x tg x do cos x 0 cos xcos x − ( ) ( ) π⎡ = + π ∈⎢⇔ ⎢ − + =⎢⎣ π⇔ = + π ∈ ≠ 2 x k , k 4 2tg x tgx 1 0 voâ nghieäm x k , k nhaän do sin 2x 0 4 Löu yù : coù theå laøm caùch khaùc ( ) ( )1 1* * 1 sin2x 1 cos2x 2 2 ⇔ − + − =0 ⇔ = + π⎛ ⎞⇔ = +⎜ ⎟⎝ ⎠ 3 sin 2x cos 2x 3 2 sin 2x : voâ nghieäm 4 Baøi 133 : Giaûi phöông trình ( )sin 3x cos3x 2cos x 0 *+ + = ( ) ( ) ( )3 3* 3sin x 4sin x 4 cos x 3cos x 2cos x⇔ − + − + 0= = 3 33sin x 4sin x 4cos x cosx 0⇔ − + − Vì cosx = 0 khoâng laø nghieäm neân chia hai veá phöông trình cho ta ñöôïc 3cos x 0≠ ( ) ( ) ( )2 3 2* 3tgx 1 tg x 4tg x 4 1 tg x 0⇔ + − + − + = ( ) ( ) ⇔ − − + + = =⎧⇔ ⎨ + − − =⎩ =⎧⎪⇔ ⎨ + − =⎪⎩ ⇔ = − ∨ = ± π π⇔ = − + π ∨ = ± + π ∈ 3 2 3 2 2 tg x tg x 3tgx 3 0 t tgx t t 3t 3 0 t tgx t 1 t 3 0 tgx 1 tgx 3 x k x k , k 4 3 Baøi 134 : Giaûi phöông trình ( )3 5sin4x.cosx6sin x 2cos x * 2cos2x − = Ñieàu kieän : 2 2cos2x 0 cos x sin x 0 tgx 1≠ ⇔ − ≠ ⇔ ≠ ± Ta coù : (*) 3 10sin2x cos2x cos x6sin x 2cos x 2cos2x cos2x 0 ⎧ − =⎪⇔ ⎨⎪ ≠⎩ 36s
File đính kèm:
- luong_giac_7834.pdf