Bài giảng Giải tích 12 - Đạo hàm

Viết phương trình tiếp tuyến của (P) tại giao điểm của (P) và trục Ox.

Viết phương trình tiếp tuyến của (P) tại điểm thuộc (P) có tung dộ là –4.

Phương trình hoành độ giao điểm:

Phương trình tiếp tuyến

Phương trình tiếp tuyến

ppt12 trang | Chia sẻ: minhanh89 | Lượt xem: 656 | Lượt tải: 2download
Bạn đang xem nội dung Bài giảng Giải tích 12 - Đạo hàm, để tải tài liệu về máy bạn hãy click vào nút TẢI VỀ
Ý nghĩa hình học của đạo hàmPhương trình tiếp tuyến của đường cong Giải Tích 12Gv: Đỗ Hữu Vị ĐẠO HÀM 1. Nhắc lại:1/ Hệ số góc của đường thẳng:● (d) : y = ax + ba : hệ số góc của (d)yxO(d)a = tga > 0   nhọna < 0   tù(d)● Hệ số góc của đường thẳng qua A(xA,yA) và B(xB,yB) là:yxOAxAyABxByB● Phương trình của đường thẳng qua M0(x0,y0) có hệ số góc k là:2/ Tiếp tuyến của đường cong:MMM0.(C)Cho đường cong (C) và M0  (C).Tiếp tuyến của (C) tại M0 là vị trí giới hạn của cát tuyến M0M khi điểm M di động trên (C) dần tới M0.3/ Định nghĩa đạo hàm:Cho hàm số y = f(x) xác định trong (a,b) và x0(a,b),đạo hàm của y = f(x) tại x0 là:Hãy liên kết các kiến thức vừa được nhắc lại trên đây ta sẽ có Ý NGHIÃ HÌNH HỌC của ĐẠO HÀM.yxOx0M0.f(x0)xMf(x)2. Ý nghĩa hình học của đạo hàm:Cho (C): y = f(x) và M0(x0,f(x0))(C).Lấy M(x,f(x))(C).Hệ số góc của cát tuyến M0M là:Khi x →x0 tức là M → M0 thì và cát tuyến M0M → tiếp tuyến M0TDo đó hệ số góc của tiếp tuyến M0T là ● Ý nghĩa hình học của đạo hàm:Hệ số góc của tiếp tuyến của đường cong (C):y = f(x) tại điểm M0(x0,y0)  (C) là đạo hàm f/(x0).yx@T3. Phương trình tiếp tuyến:● Loại 1:Phương trình tiếp tuyến của (C): y = f(x) tại M0(x0,y0)(C):Ví dụ:Cho 1/ Viết phương trình tiếp tuyến của (P) tại giao điểm của (P) và trục Ox.2/ Viết phương trình tiếp tuyến của (P) tại điểm thuộc (P) có tung dộ là –4. 1/ Phương trình hoành độ giao điểm:▪ x0=-1,y0=0:Phương trình tiếp tuyến:▪ x0=3,y0=0:Phương trình tiếp tuyến:2/Phương trình tiếp tuyến: y = – 4 @● Loại 2:Viết phương trình tiếp tuyến của (C): y = f(x) biết hệ số góc k.▪ Giải phương trình có nghiệm x0. ▪ Tính y0, dùng công thức pttt như loại 1.Ví dụ:Cho . Viết phương trình tiếp tuyến của (C) biết: 1/ Tiếp tuyến có hệ số góc bằng – 4 .2/ Tiếp tuyến vuông góc với đường thẳng x – y + 2 = 0 1/Phương trình tiếp tuyến y = – 4x – 3 Phương trình tiếp tuyến y = – 4x + 13 2/ Đường thẳng (d): x – y + 2 = 0 có hệ số góc bằng 1.Tiếp tuyến vuông góc với (d) nên có hệ số góc k thỏa: k.1 = –1 k =–1 Đáp: y = – x – 6 ; y = – x – 2 @● Loại 3:Viết phương trình tiếp tuyến của (C): y = f(x) đi qua điểm A(xA,yA).▪ Gọi M0(x0,y0) là tiếp điểm, phương trình tiếp tuyến là:▪Giải phương trình này có nghiệm x0, từ đó có phương trình tiếp tuyến Ví dụ:Viết phương trình tiếp tuyến củabiết tiếp tuyến đó qua A(0,– 4). Phương trình tiếp tuyến là: Gọi M0(x0,y0) là tiếp điểm,Ví dụ:Viết phương trình tiếp tuyến củabiết tiếp tuyến đó qua S(3,3). Phương trình tiếp tuyến là Gọi M0(x0,y0) là tiếp điểm,Bài học kết thúcy = 4x – 12 y = – 4x – 4 y = – 4 5y= – 4x – 3 y= – 4x + 13 6

File đính kèm:

  • ppty nghia hinh hoc cua dao ham Phuong trinh tiep tuyen cua duong cong.ppt